Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,50 +1,49 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
|
|
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
-
processor = AutoProcessor.from_pretrained(model_name)
|
8 |
-
model = AutoModelForTextToWaveform.from_pretrained(model_name, torch_dtype=torch.float16)
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
def text_to_audio(text, speed=1.0):
|
15 |
"""Convert text to audio using Kokoro model"""
|
16 |
-
|
17 |
-
|
18 |
-
inputs = {k: v.to(device) for k, v in inputs.items()}
|
19 |
-
|
20 |
-
# Set generation parameters
|
21 |
-
gen_kwargs = {
|
22 |
-
"do_sample": True,
|
23 |
-
"temperature": 0.7,
|
24 |
-
"length_penalty": 1.0,
|
25 |
-
"repetition_penalty": 2.0,
|
26 |
-
"top_p": 0.9,
|
27 |
-
}
|
28 |
|
29 |
-
#
|
30 |
-
|
31 |
-
waveform = model.generate(**inputs, **gen_kwargs).cpu().numpy()[0]
|
32 |
|
33 |
-
#
|
34 |
-
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
return
|
43 |
|
44 |
# Create Gradio interface
|
45 |
with gr.Blocks(title="Kokoro Text-to-Audio") as app:
|
46 |
gr.Markdown("# 🎵 Kokoro Text-to-Audio Converter")
|
47 |
-
gr.Markdown("Convert text to speech using
|
48 |
|
49 |
with gr.Row():
|
50 |
with gr.Column():
|
@@ -55,7 +54,7 @@ with gr.Blocks(title="Kokoro Text-to-Audio") as app:
|
|
55 |
)
|
56 |
speed_slider = gr.Slider(
|
57 |
minimum=0.5,
|
58 |
-
maximum=
|
59 |
value=1.0,
|
60 |
step=0.1,
|
61 |
label="Speech Speed"
|
@@ -72,10 +71,10 @@ with gr.Blocks(title="Kokoro Text-to-Audio") as app:
|
|
72 |
)
|
73 |
|
74 |
gr.Markdown("### Usage Tips")
|
75 |
-
gr.Markdown("- For best results, keep your text reasonably short")
|
76 |
gr.Markdown("- Adjust the speed slider to modify the pace of speech")
|
77 |
gr.Markdown("- The model may take a moment to load on first use")
|
78 |
|
79 |
# Launch the app
|
80 |
if __name__ == "__main__":
|
81 |
-
app.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
import numpy as np
|
4 |
+
from kokoro import KModel, KPipeline
|
5 |
|
6 |
+
# Check if CUDA is available
|
7 |
+
CUDA_AVAILABLE = torch.cuda.is_available()
|
|
|
|
|
8 |
|
9 |
+
# Initialize the model
|
10 |
+
model = KModel().to('cuda' if CUDA_AVAILABLE else 'cpu').eval()
|
11 |
+
|
12 |
+
# Initialize pipelines for different language codes (using 'a' for English)
|
13 |
+
pipelines = {'a': KPipeline(lang_code='a', model=False)}
|
14 |
+
|
15 |
+
# Custom pronunciation for "kokoro"
|
16 |
+
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
|
17 |
|
18 |
def text_to_audio(text, speed=1.0):
|
19 |
"""Convert text to audio using Kokoro model"""
|
20 |
+
if not text:
|
21 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
pipeline = pipelines['a'] # Use English pipeline
|
24 |
+
voice = "af_heart" # Default voice (US English, female, Heart)
|
|
|
25 |
|
26 |
+
# Process the text
|
27 |
+
pack = pipeline.load_voice(voice)
|
28 |
|
29 |
+
for _, ps, _ in pipeline(text, voice, speed):
|
30 |
+
ref_s = pack[len(ps)-1]
|
31 |
+
|
32 |
+
# Generate audio
|
33 |
+
try:
|
34 |
+
audio = model(ps, ref_s, speed)
|
35 |
+
except Exception as e:
|
36 |
+
raise gr.Error(f"Error generating audio: {str(e)}")
|
37 |
+
|
38 |
+
# Return the audio with 24kHz sample rate
|
39 |
+
return 24000, audio.numpy()
|
40 |
|
41 |
+
return None
|
42 |
|
43 |
# Create Gradio interface
|
44 |
with gr.Blocks(title="Kokoro Text-to-Audio") as app:
|
45 |
gr.Markdown("# 🎵 Kokoro Text-to-Audio Converter")
|
46 |
+
gr.Markdown("Convert text to speech using the Kokoro-82M model")
|
47 |
|
48 |
with gr.Row():
|
49 |
with gr.Column():
|
|
|
54 |
)
|
55 |
speed_slider = gr.Slider(
|
56 |
minimum=0.5,
|
57 |
+
maximum=2.0,
|
58 |
value=1.0,
|
59 |
step=0.1,
|
60 |
label="Speech Speed"
|
|
|
71 |
)
|
72 |
|
73 |
gr.Markdown("### Usage Tips")
|
74 |
+
gr.Markdown("- For best results, keep your text reasonably short (up to ~500 characters)")
|
75 |
gr.Markdown("- Adjust the speed slider to modify the pace of speech")
|
76 |
gr.Markdown("- The model may take a moment to load on first use")
|
77 |
|
78 |
# Launch the app
|
79 |
if __name__ == "__main__":
|
80 |
+
app.launch()
|