Spaces:
Sleeping
Sleeping
File size: 6,683 Bytes
d8ef918 b3fa23a d8debf8 a7e14dd b3fa23a d8ef918 cb79291 d8ef918 b3fa23a d8debf8 b3fa23a d8ef918 a7e14dd d8ef918 d26e4b8 a7e14dd d8ef918 af9f1f9 a792e21 447d2b4 d8ef918 b3fa23a d8ef918 0fce594 d8ef918 a7e14dd d8ef918 a7e14dd 0fce594 d8ef918 a7e14dd d8ef918 a7e14dd d8ef918 c1f6b6d b3fa23a 0fce594 d8ef918 0fce594 d8ef918 0fce594 d8ef918 0fce594 a7e14dd d8ef918 a7e14dd d8ef918 a7e14dd d8ef918 a7e14dd d8ef918 a7e14dd d8ef918 b3fa23a d8debf8 b3fa23a d8ef918 a7e14dd d2b23ee b3fa23a 1d1c330 b3fa23a d8debf8 b3fa23a d8debf8 b3fa23a d8debf8 b3fa23a 1d1c330 d8debf8 b3fa23a d8debf8 b3fa23a 666723c b3fa23a d8ef918 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
# app.py
import os
import logging
import asyncio
import nest_asyncio
from datetime import datetime
import uuid
import aiohttp
import gradio as gr
from langfuse.llama_index import LlamaIndexInstrumentor
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
from llama_index.tools.weather import OpenWeatherMapToolSpec
from llama_index.tools.playwright import PlaywrightToolSpec
from llama_index.core.tools import FunctionTool
from llama_index.core.agent.workflow import AgentWorkflow
from llama_index.core.workflow import Context
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
from llama_index.core.memory import ChatMemoryBuffer
from llama_index.readers.web import RssReader
import subprocess
subprocess.run(["playwright", "install"])
# allow nested loops in Spaces
nest_asyncio.apply()
# --- Llangfuse ---
instrumentor = LlamaIndexInstrumentor(
public_key=os.environ.get("LANGFUSE_PUBLIC_KEY"),
secret_key=os.environ.get("LANGFUSE_SECRET_KEY"),
host=os.environ.get("LANGFUSE_HOST"),
)
instrumentor.start()
# --- Secrets via env vars ---
HF_TOKEN = os.getenv("HF_TOKEN")
# OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
OPENWEATHERMAP_KEY = os.getenv("OPENWEATHERMAP_API_KEY")
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
# --- LLMs ---
llm = HuggingFaceInferenceAPI(
model_name="Qwen/Qwen2.5-Coder-32B-Instruct",
token=HF_TOKEN,
task="conversational",
parameters={
"max_new_tokens": 2048,
}
)
memory = ChatMemoryBuffer.from_defaults(token_limit=8192)
today_str = datetime.now().strftime("%B %d, %Y")
ANON_USER_ID = os.environ.get("ANON_USER_ID", uuid.uuid4().hex)
# # OpenAI for pure function-calling
# openai_llm = OpenAI(
# model="gpt-4o",
# api_key=OPENAI_API_KEY,
# temperature=0.0,
# streaming=False,
# )
# --- Tools Setup ---
# DuckDuckGo
duck_spec = DuckDuckGoSearchToolSpec()
search_tool = FunctionTool.from_defaults(duck_spec.duckduckgo_full_search)
# Weather
openweather_api_key=OPENWEATHERMAP_KEY
weather_tool_spec = OpenWeatherMapToolSpec(key=openweather_api_key)
weather_tool = FunctionTool.from_defaults(
weather_tool_spec.weather_at_location,
name="current_weather",
description="Get the current weather at a specific location (city, country)."
)
forecast_tool = FunctionTool.from_defaults(
weather_tool_spec.forecast_tommorrow_at_location,
name="weather_forecast",
description="Get tomorrow's weather forecast for a specific location (city, country)."
)
# Playwright (synchronous start)
async def _start_browser():
return await PlaywrightToolSpec.create_async_playwright_browser(headless=True)
browser = asyncio.get_event_loop().run_until_complete(_start_browser())
playwright_tool_spec = PlaywrightToolSpec.from_async_browser(browser)
navigate_tool = FunctionTool.from_defaults(
playwright_tool_spec.navigate_to,
name="web_navigate",
description="Navigate to a specific URL."
)
extract_text_tool = FunctionTool.from_defaults(
playwright_tool_spec.extract_text,
name="web_extract_text",
description="Extract all text from the current page."
)
extract_links_tool = FunctionTool.from_defaults(
playwright_tool_spec.extract_hyperlinks,
name="web_extract_links",
description="Extract all hyperlinks from the current page."
)
# Google News RSS
def fetch_google_news_rss():
docs = RssReader(html_to_text=True).load_data(["https://news.google.com/rss"])
return [{"title":d.metadata.get("title",""), "url":d.metadata.get("link","")} for d in docs]
google_rss_tool = FunctionTool.from_defaults(
fn=fetch_google_news_rss,
name="fetch_google_news_rss",
description="Fetch latest headlines and URLs from Google News RSS."
)
# Serper
async def fetch_serper_news(query: str):
if not serper_api_key:
raise ValueError("Missing SERPER_API_KEY environment variable")
url = f"https://google.serper.dev/news?q={query}&tbs=qdr%3Ad"
headers = {"X-API-KEY": serper_api_key, "Content-Type": "application/json"}
async with aiohttp.ClientSession() as session:
async with session.get(url, headers=headers) as resp:
resp.raise_for_status()
return await resp.json()
serper_news_tool = FunctionTool.from_defaults(
fetch_serper_news,
name="fetch_news_from_serper",
description="Fetch news articles on a given topic via the Serper API."
)
# Create the agent workflow
tools = [
search_tool,
navigate_tool,
extract_text_tool,
extract_links_tool,
weather_tool,
forecast_tool,
google_rss_tool,
serper_news_tool,
]
web_agent = AgentWorkflow.from_tools_or_functions(tools, llm=llm)
ctx = Context(web_agent)
# Async helper to run agent queries
def run_query_sync(query: str):
"""Helper to run async agent.run in sync context."""
return asyncio.get_event_loop().run_until_complete(
web_agent.run(query, ctx=ctx)
)
async def run_query(query: str):
trace_id = f"agent-run-{uuid.uuid4().hex}"
try:
with instrumentor.observe(
trace_id=trace_id,
session_id="web-agent-session",
user_id=ANON_USER_ID,
):
return await web_agent.run(query, ctx=ctx)
finally:
instrumentor.flush()
# Gradio interface function
async def gradio_query(user_input, chat_history=None):
history = chat_history or []
history.append({"role": "user", "content": user_input})
result = await run_query(user_input)
text = result.response if isinstance(result.response, str) else str(result.response)
history.append({"role": "assistant", "content": text})
return history, history
# Build and launch Gradio app
grb = gr.Blocks()
with grb:
gr.Markdown("## Perspicacity")
gr.Markdown(
"This bot can check the news, tell you the weather, and even browse websites to answer follow-up questions — all powered by a team of tiny AI agents working behind the scenes.\n\n"
"🧪 Built for fun during the [AI Agents course](https://huggingface.co/learn/agents-course/unit0/introduction) — it's just a demo to show what agents can do. \n"
"🙌 Got ideas or improvements? PRs welcome! \n\n"
"👉 _Try asking “What’s the weather in Montreal?” or “What’s in the news today?”_"
)
chatbot = gr.Chatbot(type="messages")
txt = gr.Textbox(placeholder="Ask me anything...", show_label=False)
txt.submit(
gradio_query,
inputs=[txt, chatbot],
outputs=[chatbot, chatbot] # first for display, second for state
)
gr.Button("Send").click(gradio_query, [txt, chatbot], [chatbot, chatbot])
if __name__ == "__main__":
grb.launch() |