Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,122 +1,116 @@
|
|
|
|
1 |
import os
|
2 |
import logging
|
3 |
import asyncio
|
4 |
-
import nest_asyncio
|
5 |
-
from datetime import datetime
|
6 |
-
import uuid
|
7 |
-
import aiohttp
|
8 |
-
import gradio as gr
|
9 |
-
|
10 |
-
from langfuse.llama_index import LlamaIndexInstrumentor
|
11 |
-
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
|
12 |
-
from llama_index.tools.weather import OpenWeatherMapToolSpec
|
13 |
-
from llama_index.tools.playwright import PlaywrightToolSpec
|
14 |
-
from llama_index.core.tools import FunctionTool
|
15 |
-
from llama_index.core.agent.workflow import AgentWorkflow
|
16 |
-
from llama_index.core.workflow import Context
|
17 |
-
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
18 |
from llama_index.core.memory import ChatMemoryBuffer
|
19 |
from llama_index.readers.web import RssReader
|
20 |
|
21 |
-
|
22 |
-
|
23 |
|
24 |
-
#
|
|
|
|
|
|
|
25 |
instrumentor = LlamaIndexInstrumentor(
|
26 |
public_key=os.environ.get("LANGFUSE_PUBLIC_KEY"),
|
27 |
secret_key=os.environ.get("LANGFUSE_SECRET_KEY"),
|
28 |
-
host=os.environ.get("LANGFUSE_HOST"),
|
29 |
)
|
30 |
instrumentor.start()
|
31 |
|
32 |
-
#
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
36 |
|
37 |
-
#
|
38 |
llm = HuggingFaceInferenceAPI(
|
39 |
model_name="Qwen/Qwen2.5-Coder-32B-Instruct",
|
40 |
-
token=
|
41 |
task="conversational"
|
42 |
)
|
43 |
-
|
|
|
44 |
today_str = datetime.now().strftime("%B %d, %Y")
|
45 |
ANON_USER_ID = os.environ.get("ANON_USER_ID", uuid.uuid4().hex)
|
46 |
|
47 |
-
#
|
48 |
-
#
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
weather_tool = FunctionTool.from_defaults(
|
55 |
-
|
56 |
name="current_weather",
|
57 |
-
description="Get the current weather
|
58 |
)
|
59 |
forecast_tool = FunctionTool.from_defaults(
|
60 |
-
|
61 |
name="weather_forecast",
|
62 |
-
description="Get tomorrow's weather forecast for a city
|
63 |
)
|
64 |
|
65 |
-
# Playwright
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
playwright_tool_spec = PlaywrightToolSpec.from_async_browser(browser)
|
74 |
|
75 |
navigate_tool = FunctionTool.from_defaults(
|
76 |
playwright_tool_spec.navigate_to,
|
77 |
name="web_navigate",
|
78 |
-
description="Navigate to a URL."
|
79 |
)
|
80 |
extract_text_tool = FunctionTool.from_defaults(
|
81 |
playwright_tool_spec.extract_text,
|
82 |
name="web_extract_text",
|
83 |
-
description="Extract text from the current page."
|
84 |
)
|
85 |
extract_links_tool = FunctionTool.from_defaults(
|
86 |
playwright_tool_spec.extract_hyperlinks,
|
87 |
name="web_extract_links",
|
88 |
-
description="Extract hyperlinks from the current page."
|
89 |
)
|
90 |
|
91 |
-
# Google News RSS
|
92 |
def fetch_google_news_rss():
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
|
99 |
google_rss_tool = FunctionTool.from_defaults(
|
100 |
-
fetch_google_news_rss,
|
101 |
name="fetch_google_news_rss",
|
102 |
-
description="
|
103 |
)
|
104 |
|
105 |
-
# Serper
|
106 |
async def fetch_serper_news(query: str):
|
107 |
if not serper_api_key:
|
108 |
raise ValueError("Missing SERPER_API_KEY environment variable")
|
109 |
-
url = f"https://google.serper.dev/news?q={query}&tbs=qdr%3Ad"
|
110 |
-
headers = {"X-API-KEY": serper_api_key, "Content-Type": "application/json"}
|
111 |
-
async with aiohttp.ClientSession() as session:
|
112 |
-
async with session.get(url, headers=headers) as resp:
|
113 |
-
resp.raise_for_status()
|
114 |
-
return await resp.json()
|
115 |
-
|
116 |
serper_news_tool = FunctionTool.from_defaults(
|
117 |
fetch_serper_news,
|
118 |
name="fetch_news_from_serper",
|
119 |
-
description="Fetch news articles on a topic via Serper API."
|
120 |
)
|
121 |
|
122 |
# Create the agent workflow
|
@@ -125,45 +119,14 @@ tools = [
|
|
125 |
navigate_tool,
|
126 |
extract_text_tool,
|
127 |
extract_links_tool,
|
128 |
-
weather_tool,
|
129 |
-
forecast_tool,
|
130 |
-
google_rss_tool,
|
131 |
-
serper_news_tool,
|
132 |
-
]
|
133 |
-
web_agent = AgentWorkflow.from_tools_or_functions(tools, llm=llm)
|
134 |
-
ctx = Context(web_agent)
|
135 |
-
|
136 |
-
# Async helper to run agent queries
|
137 |
-
def run_query_sync(query: str):
|
138 |
-
"""Helper to run async agent.run in sync context."""
|
139 |
-
return asyncio.get_event_loop().run_until_complete(
|
140 |
-
web_agent.run(query, ctx=ctx)
|
141 |
-
)
|
142 |
-
|
143 |
-
async def run_query(query: str):
|
144 |
-
trace_id = f"agent-run-{uuid.uuid4().hex}"
|
145 |
-
try:
|
146 |
-
with instrumentor.observe(
|
147 |
-
trace_id=trace_id,
|
148 |
-
session_id="web-agent-session",
|
149 |
-
user_id=ANON_USER_ID,
|
150 |
-
):
|
151 |
-
return await web_agent.run(query, ctx=ctx)
|
152 |
-
finally:
|
153 |
-
instrumentor.flush()
|
154 |
|
155 |
# Gradio interface function
|
156 |
async def gradio_query(user_input, chat_history=None):
|
157 |
-
|
158 |
result = await run_query(user_input)
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
resp_text = resp_text.split(":", 1)[1].strip()
|
163 |
-
# Append OpenAI-style message dicts
|
164 |
-
history.append({"role": "user", "content": user_input})
|
165 |
-
history.append({"role": "assistant", "content": resp_text})
|
166 |
-
return history, history
|
167 |
|
168 |
# Build and launch Gradio app
|
169 |
grb = gr.Blocks()
|
@@ -175,11 +138,10 @@ with grb:
|
|
175 |
"🙌 Got ideas or improvements? PRs welcome! \n\n"
|
176 |
"👉 _Try asking “What’s the weather in Montreal?” or “What’s in the news today?”_"
|
177 |
)
|
178 |
-
chatbot = gr.Chatbot(
|
179 |
txt = gr.Textbox(placeholder="Ask me anything...", show_label=False)
|
180 |
txt.submit(gradio_query, [txt, chatbot], [chatbot, chatbot])
|
181 |
gr.Button("Send").click(gradio_query, [txt, chatbot], [chatbot, chatbot])
|
182 |
|
183 |
if __name__ == "__main__":
|
184 |
-
|
185 |
-
grb.launch()
|
|
|
1 |
+
# app.py
|
2 |
import os
|
3 |
import logging
|
4 |
import asyncio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from llama_index.core.memory import ChatMemoryBuffer
|
6 |
from llama_index.readers.web import RssReader
|
7 |
|
8 |
+
import subprocess
|
9 |
+
subprocess.run(["playwright", "install"])
|
10 |
|
11 |
+
# allow nested loops in Spaces
|
12 |
+
nest_asyncio.apply()
|
13 |
+
|
14 |
+
# --- Llangfuse ---
|
15 |
instrumentor = LlamaIndexInstrumentor(
|
16 |
public_key=os.environ.get("LANGFUSE_PUBLIC_KEY"),
|
17 |
secret_key=os.environ.get("LANGFUSE_SECRET_KEY"),
|
|
|
18 |
)
|
19 |
instrumentor.start()
|
20 |
|
21 |
+
# --- Secrets via env vars ---
|
22 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
23 |
+
# OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
24 |
+
OPENWEATHERMAP_KEY = os.getenv("OPENWEATHERMAP_API_KEY")
|
25 |
+
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
|
26 |
|
27 |
+
# --- LLMs ---
|
28 |
llm = HuggingFaceInferenceAPI(
|
29 |
model_name="Qwen/Qwen2.5-Coder-32B-Instruct",
|
30 |
+
token=HF_TOKEN,
|
31 |
task="conversational"
|
32 |
)
|
33 |
+
|
34 |
+
memory = ChatMemoryBuffer.from_defaults(token_limit=8192)
|
35 |
today_str = datetime.now().strftime("%B %d, %Y")
|
36 |
ANON_USER_ID = os.environ.get("ANON_USER_ID", uuid.uuid4().hex)
|
37 |
|
38 |
+
# # OpenAI for pure function-calling
|
39 |
+
# openai_llm = OpenAI(
|
40 |
+
# model="gpt-4o",
|
41 |
+
# api_key=OPENAI_API_KEY,
|
42 |
+
# temperature=0.0,
|
43 |
+
# streaming=False,
|
44 |
+
# )
|
45 |
+
|
46 |
+
# --- Tools Setup ---
|
47 |
+
# DuckDuckGo
|
48 |
+
duck_spec = DuckDuckGoSearchToolSpec()
|
49 |
+
search_tool = FunctionTool.from_defaults(duck_spec.duckduckgo_full_search)
|
50 |
+
|
51 |
+
# Weather
|
52 |
+
openweather_api_key=OPENWEATHERMAP_KEY
|
53 |
+
weather_tool_spec = OpenWeatherMapToolSpec(key=openweather_api_key)
|
54 |
+
weather_tool_spec = OpenWeatherMapToolSpec(key=openweather_api_key)
|
55 |
weather_tool = FunctionTool.from_defaults(
|
56 |
+
weather_tool_spec.weather_at_location,
|
57 |
name="current_weather",
|
58 |
+
description="Get the current weather at a specific location (city, country)."
|
59 |
)
|
60 |
forecast_tool = FunctionTool.from_defaults(
|
61 |
+
weather_tool_spec.forecast_tommorrow_at_location,
|
62 |
name="weather_forecast",
|
63 |
+
description="Get tomorrow's weather forecast for a specific location (city, country)."
|
64 |
)
|
65 |
|
66 |
+
# Playwright (synchronous start)
|
67 |
+
async def _start_browser():
|
68 |
+
return await PlaywrightToolSpec.create_async_playwright_browser(headless=True)
|
69 |
+
browser = asyncio.get_event_loop().run_until_complete(_start_browser())
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
playwright_tool_spec = PlaywrightToolSpec.from_async_browser(browser)
|
75 |
|
76 |
navigate_tool = FunctionTool.from_defaults(
|
77 |
playwright_tool_spec.navigate_to,
|
78 |
name="web_navigate",
|
79 |
+
description="Navigate to a specific URL."
|
80 |
)
|
81 |
extract_text_tool = FunctionTool.from_defaults(
|
82 |
playwright_tool_spec.extract_text,
|
83 |
name="web_extract_text",
|
84 |
+
description="Extract all text from the current page."
|
85 |
)
|
86 |
extract_links_tool = FunctionTool.from_defaults(
|
87 |
playwright_tool_spec.extract_hyperlinks,
|
88 |
name="web_extract_links",
|
89 |
+
description="Extract all hyperlinks from the current page."
|
90 |
)
|
91 |
|
92 |
+
# Google News RSS
|
93 |
def fetch_google_news_rss():
|
94 |
+
docs = RssReader(html_to_text=True).load_data(["https://news.google.com/rss"])
|
95 |
+
return [{"title":d.metadata.get("title",""), "url":d.metadata.get("link","")} for d in docs]
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
|
100 |
google_rss_tool = FunctionTool.from_defaults(
|
101 |
+
fn=fetch_google_news_rss,
|
102 |
name="fetch_google_news_rss",
|
103 |
+
description="Fetch latest headlines and URLs from Google News RSS."
|
104 |
)
|
105 |
|
106 |
+
# Serper
|
107 |
async def fetch_serper_news(query: str):
|
108 |
if not serper_api_key:
|
109 |
raise ValueError("Missing SERPER_API_KEY environment variable")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
serper_news_tool = FunctionTool.from_defaults(
|
111 |
fetch_serper_news,
|
112 |
name="fetch_news_from_serper",
|
113 |
+
description="Fetch news articles on a given topic via the Serper API."
|
114 |
)
|
115 |
|
116 |
# Create the agent workflow
|
|
|
119 |
navigate_tool,
|
120 |
extract_text_tool,
|
121 |
extract_links_tool,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
# Gradio interface function
|
124 |
async def gradio_query(user_input, chat_history=None):
|
125 |
+
chat_history = chat_history or []
|
126 |
result = await run_query(user_input)
|
127 |
+
response = result.response
|
128 |
+
chat_history.append((user_input, response))
|
129 |
+
return chat_history, chat_history
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
# Build and launch Gradio app
|
132 |
grb = gr.Blocks()
|
|
|
138 |
"🙌 Got ideas or improvements? PRs welcome! \n\n"
|
139 |
"👉 _Try asking “What’s the weather in Montreal?” or “What’s in the news today?”_"
|
140 |
)
|
141 |
+
chatbot = gr.Chatbot() # conversation UI
|
142 |
txt = gr.Textbox(placeholder="Ask me anything...", show_label=False)
|
143 |
txt.submit(gradio_query, [txt, chatbot], [chatbot, chatbot])
|
144 |
gr.Button("Send").click(gradio_query, [txt, chatbot], [chatbot, chatbot])
|
145 |
|
146 |
if __name__ == "__main__":
|
147 |
+
grb.launch()
|
|