Update app.py
Browse files
app.py
CHANGED
@@ -15,10 +15,9 @@ import pandas as pd # Para formatear la salida en tabla
|
|
15 |
|
16 |
# --- Configuración ---
|
17 |
MODEL_REPO_ID = "google/cxr-foundation"
|
18 |
-
MODEL_DOWNLOAD_DIR = './hf_cxr_foundation_space'
|
19 |
-
|
20 |
-
|
21 |
-
POSITIVE_SIMILARITY_THRESHOLD = 0.0
|
22 |
print(f"Usando umbrales: Comp Δ={SIMILARITY_DIFFERENCE_THRESHOLD}, Simp τ={POSITIVE_SIMILARITY_THRESHOLD}")
|
23 |
|
24 |
# --- Prompts ---
|
@@ -31,255 +30,158 @@ criteria_list_negative = [
|
|
31 |
"cropped image", "scapulae overlying lungs", "blurred image", "obscuring artifact"
|
32 |
]
|
33 |
|
34 |
-
# --- Funciones Auxiliares (
|
35 |
-
# @tf.function(input_signature=[tf.TensorSpec(shape=[None], dtype=tf.string)])
|
36 |
-
def preprocess_text(text):
|
37 |
-
|
38 |
-
return bert_preprocessor_global(text)
|
39 |
|
40 |
def bert_tokenize(text, preprocessor):
|
41 |
-
|
42 |
-
if preprocessor is None:
|
43 |
-
raise ValueError("BERT preprocessor no está cargado.")
|
44 |
if not isinstance(text, str): text = str(text)
|
45 |
-
|
46 |
-
# Ejecutar el preprocesador
|
47 |
out = preprocessor(tf.constant([text.lower()]))
|
48 |
-
|
49 |
-
# Extraer y procesar IDs y máscaras
|
50 |
ids = out['input_word_ids'].numpy().astype(np.int32)
|
51 |
masks = out['input_mask'].numpy().astype(np.float32)
|
52 |
paddings = 1.0 - masks
|
53 |
-
|
54 |
-
# Reemplazar token [SEP] (102) por 0 y marcar como padding
|
55 |
end_token_idx = (ids == 102)
|
56 |
ids[end_token_idx] = 0
|
57 |
paddings[end_token_idx] = 1.0
|
58 |
-
|
59 |
-
# Asegurar las dimensiones (B, T, S) -> (1, 1, 128)
|
60 |
-
# El preprocesador puede devolver (1, 128), necesitamos (1, 1, 128)
|
61 |
if ids.ndim == 2: ids = np.expand_dims(ids, axis=1)
|
62 |
if paddings.ndim == 2: paddings = np.expand_dims(paddings, axis=1)
|
63 |
-
|
64 |
-
# Verificar formas finales
|
65 |
expected_shape = (1, 1, 128)
|
66 |
if ids.shape != expected_shape:
|
67 |
-
# Intentar reajustar si es necesario (puede pasar con algunas versiones)
|
68 |
if ids.shape == (1,128): ids = np.expand_dims(ids, axis=1)
|
69 |
else: raise ValueError(f"Shape incorrecta para ids: {ids.shape}, esperado {expected_shape}")
|
70 |
if paddings.shape != expected_shape:
|
71 |
if paddings.shape == (1,128): paddings = np.expand_dims(paddings, axis=1)
|
72 |
else: raise ValueError(f"Shape incorrecta para paddings: {paddings.shape}, esperado {expected_shape}")
|
73 |
-
|
74 |
return ids, paddings
|
75 |
|
76 |
def png_to_tfexample(image_array: np.ndarray) -> tf.train.Example:
|
77 |
-
"""Crea tf.train.Example desde NumPy array (escala de grises)."""
|
78 |
if image_array.ndim == 3 and image_array.shape[2] == 1:
|
79 |
-
image_array = np.squeeze(image_array, axis=2)
|
80 |
elif image_array.ndim != 2:
|
81 |
-
raise ValueError(f'Array debe ser 2-D
|
82 |
-
|
83 |
image = image_array.astype(np.float32)
|
84 |
-
min_val = image.min()
|
85 |
-
max_val = image.max()
|
86 |
-
|
87 |
-
# Evitar división por cero si la imagen es constante
|
88 |
if max_val <= min_val:
|
89 |
-
# Si es constante, tratar como uint8 si el rango original lo permitía,
|
90 |
-
# o simplemente ponerla a 0 si es float.
|
91 |
if image_array.dtype == np.uint8 or (min_val >= 0 and max_val <= 255):
|
92 |
-
pixel_array = image.astype(np.uint8)
|
93 |
-
|
94 |
-
|
95 |
-
pixel_array = np.zeros_like(image, dtype=np.uint16)
|
96 |
-
bitdepth = 16
|
97 |
else:
|
98 |
-
image -= min_val
|
99 |
current_max = max_val - min_val
|
100 |
-
# Escalar a 16-bit para mayor precisión si no era uint8 originalmente
|
101 |
if image_array.dtype != np.uint8:
|
102 |
image *= 65535 / current_max
|
103 |
-
pixel_array = image.astype(np.uint16)
|
104 |
-
bitdepth = 16
|
105 |
else:
|
106 |
-
# Si era uint8, mantener el rango y tipo
|
107 |
-
# La resta del min ya la dejó en [0, current_max]
|
108 |
-
# Escalar a 255 si es necesario
|
109 |
image *= 255 / current_max
|
110 |
-
pixel_array = image.astype(np.uint8)
|
111 |
-
bitdepth = 8
|
112 |
-
|
113 |
-
# Codificar como PNG
|
114 |
output = io.BytesIO()
|
115 |
-
png.Writer(
|
116 |
-
width=pixel_array.shape[1],
|
117 |
-
height=pixel_array.shape[0],
|
118 |
-
greyscale=True,
|
119 |
-
bitdepth=bitdepth
|
120 |
-
).write(output, pixel_array.tolist())
|
121 |
-
png_bytes = output.getvalue()
|
122 |
-
|
123 |
-
# Crear tf.train.Example
|
124 |
example = tf.train.Example()
|
125 |
features = example.features.feature
|
126 |
-
features['image/encoded'].bytes_list.value.append(
|
127 |
features['image/format'].bytes_list.value.append(b'png')
|
128 |
return example
|
129 |
|
130 |
def generate_image_embedding(img_np, elixrc_infer, qformer_infer):
|
131 |
-
"
|
132 |
-
if elixrc_infer is None or qformer_infer is None:
|
133 |
-
raise ValueError("Modelos ELIXR-C o QFormer no cargados.")
|
134 |
-
|
135 |
try:
|
136 |
-
# 1. ELIXR-C
|
137 |
serialized_img_tf_example = png_to_tfexample(img_np).SerializeToString()
|
138 |
elixrc_output = elixrc_infer(input_example=tf.constant([serialized_img_tf_example]))
|
139 |
elixrc_embedding = elixrc_output['feature_maps_0'].numpy()
|
140 |
-
print(f" Embedding ELIXR-C shape: {elixrc_embedding.shape}")
|
141 |
-
|
142 |
-
# 2. QFormer (Imagen)
|
143 |
qformer_input_img = {
|
144 |
'image_feature': elixrc_embedding.tolist(),
|
145 |
-
'ids': np.zeros((1, 1, 128), dtype=np.int32).tolist(),
|
146 |
-
'paddings': np.ones((1, 1, 128), dtype=np.float32).tolist(),
|
147 |
}
|
148 |
qformer_output_img = qformer_infer(**qformer_input_img)
|
149 |
image_embedding = qformer_output_img['all_contrastive_img_emb'].numpy()
|
150 |
-
|
151 |
-
# Ajustar dimensiones si es necesario
|
152 |
if image_embedding.ndim > 2:
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
axis=tuple(range(1, image_embedding.ndim - 1))
|
157 |
-
)
|
158 |
-
if image_embedding.ndim == 1:
|
159 |
-
image_embedding = np.expand_dims(image_embedding, axis=0)
|
160 |
-
elif image_embedding.ndim == 1:
|
161 |
-
image_embedding = np.expand_dims(image_embedding, axis=0) # Asegurar 2D
|
162 |
-
|
163 |
-
print(f" Embedding final imagen shape: {image_embedding.shape}")
|
164 |
-
if image_embedding.ndim != 2:
|
165 |
-
raise ValueError(f"Embedding final de imagen no tiene 2 dimensiones: {image_embedding.shape}")
|
166 |
return image_embedding
|
167 |
-
|
168 |
except Exception as e:
|
169 |
-
print(f"Error generando embedding
|
170 |
-
traceback.print_exc()
|
171 |
-
raise # Re-lanzar la excepción para que Gradio la maneje
|
172 |
|
173 |
def calculate_similarities_and_classify(image_embedding, bert_preprocessor, qformer_infer):
|
174 |
-
"
|
175 |
-
if image_embedding is None: raise ValueError("Embedding de imagen es None.")
|
176 |
if bert_preprocessor is None: raise ValueError("Preprocesador BERT es None.")
|
177 |
if qformer_infer is None: raise ValueError("QFormer es None.")
|
178 |
-
|
179 |
detailed_results = {}
|
180 |
-
print("\n--- Calculando similitudes
|
181 |
-
|
182 |
for i in range(len(criteria_list_positive)):
|
183 |
-
positive_text = criteria_list_positive[i]
|
184 |
-
|
185 |
-
criterion_name
|
186 |
-
|
187 |
-
print(f"Procesando criterio: \"{criterion_name}\"")
|
188 |
similarity_positive, similarity_negative, difference = None, None, None
|
189 |
classification_comp, classification_simp = "ERROR", "ERROR"
|
190 |
-
|
191 |
try:
|
192 |
-
# 1. Embedding Texto Positivo
|
193 |
tokens_pos, paddings_pos = bert_tokenize(positive_text, bert_preprocessor)
|
194 |
-
|
195 |
-
|
196 |
-
'ids': tokens_pos.tolist(), 'paddings': paddings_pos.tolist(),
|
197 |
-
}
|
198 |
-
text_embedding_pos = qformer_infer(**qformer_input_text_pos)['contrastive_txt_emb'].numpy()
|
199 |
if text_embedding_pos.ndim == 1: text_embedding_pos = np.expand_dims(text_embedding_pos, axis=0)
|
200 |
|
201 |
-
# 2. Embedding Texto Negativo
|
202 |
tokens_neg, paddings_neg = bert_tokenize(negative_text, bert_preprocessor)
|
203 |
-
|
204 |
-
|
205 |
-
'ids': tokens_neg.tolist(), 'paddings': paddings_neg.tolist(),
|
206 |
-
}
|
207 |
-
text_embedding_neg = qformer_infer(**qformer_input_text_neg)['contrastive_txt_emb'].numpy()
|
208 |
if text_embedding_neg.ndim == 1: text_embedding_neg = np.expand_dims(text_embedding_neg, axis=0)
|
209 |
|
210 |
-
|
211 |
-
if image_embedding.shape[1] !=
|
212 |
-
raise ValueError(f"Dimensión incompatible: Imagen ({image_embedding.shape[1]}) vs Texto Pos ({text_embedding_pos.shape[1]})")
|
213 |
-
if image_embedding.shape[1] != text_embedding_neg.shape[1]:
|
214 |
-
raise ValueError(f"Dimensión incompatible: Imagen ({image_embedding.shape[1]}) vs Texto Neg ({text_embedding_neg.shape[1]})")
|
215 |
|
216 |
-
# 3. Calcular Similitudes
|
217 |
similarity_positive = cosine_similarity(image_embedding, text_embedding_pos)[0][0]
|
218 |
similarity_negative = cosine_similarity(image_embedding, text_embedding_neg)[0][0]
|
219 |
-
print(f" Sim (+)={similarity_positive:.4f}, Sim (-)={similarity_negative:.4f}")
|
220 |
|
221 |
-
# 4. Clasificar
|
222 |
difference = similarity_positive - similarity_negative
|
223 |
classification_comp = "PASS" if difference > SIMILARITY_DIFFERENCE_THRESHOLD else "FAIL"
|
224 |
classification_simp = "PASS" if similarity_positive > POSITIVE_SIMILARITY_THRESHOLD else "FAIL"
|
225 |
-
print(f" Diff={difference:.4f} -> Comp:
|
226 |
-
|
227 |
except Exception as e:
|
228 |
-
print(f" ERROR
|
229 |
-
traceback.print_exc()
|
230 |
-
# Mantener clasificaciones como "ERROR"
|
231 |
-
|
232 |
-
# Guardar resultados
|
233 |
detailed_results[criterion_name] = {
|
234 |
-
'positive_prompt': positive_text,
|
235 |
-
'negative_prompt': negative_text,
|
236 |
'similarity_positive': float(similarity_positive) if similarity_positive is not None else None,
|
237 |
'similarity_negative': float(similarity_negative) if similarity_negative is not None else None,
|
238 |
'difference': float(difference) if difference is not None else None,
|
239 |
-
'classification_comparative': classification_comp,
|
240 |
-
'classification_simplified': classification_simp
|
241 |
}
|
242 |
return detailed_results
|
243 |
|
244 |
# --- Carga Global de Modelos ---
|
245 |
-
# Se ejecuta UNA VEZ al iniciar la aplicación Gradio/Space
|
246 |
print("--- Iniciando carga global de modelos ---")
|
247 |
start_time = time.time()
|
248 |
models_loaded = False
|
249 |
bert_preprocessor_global = None
|
250 |
elixrc_infer_global = None
|
251 |
qformer_infer_global = None
|
252 |
-
|
253 |
try:
|
254 |
-
#
|
255 |
-
|
256 |
-
#
|
257 |
-
#
|
258 |
-
#
|
259 |
|
260 |
-
# Crear directorio si no existe
|
261 |
os.makedirs(MODEL_DOWNLOAD_DIR, exist_ok=True)
|
262 |
print(f"Descargando/verificando modelos en: {MODEL_DOWNLOAD_DIR}")
|
263 |
snapshot_download(repo_id=MODEL_REPO_ID, local_dir=MODEL_DOWNLOAD_DIR,
|
264 |
allow_patterns=['elixr-c-v2-pooled/*', 'pax-elixr-b-text/*'],
|
265 |
-
local_dir_use_symlinks=False) #
|
266 |
print("Modelos descargados/verificados.")
|
267 |
|
268 |
-
# Cargar Preprocesador BERT desde TF Hub
|
269 |
print("Cargando Preprocesador BERT...")
|
270 |
-
# Usar handle explícito puede ser más robusto en algunos entornos
|
271 |
bert_preprocess_handle = "https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3"
|
272 |
bert_preprocessor_global = tf_hub.KerasLayer(bert_preprocess_handle)
|
273 |
print("Preprocesador BERT cargado.")
|
274 |
|
275 |
-
# Cargar ELIXR-C
|
276 |
print("Cargando ELIXR-C...")
|
277 |
elixrc_model_path = os.path.join(MODEL_DOWNLOAD_DIR, 'elixr-c-v2-pooled')
|
278 |
elixrc_model = tf.saved_model.load(elixrc_model_path)
|
279 |
elixrc_infer_global = elixrc_model.signatures['serving_default']
|
280 |
print("Modelo ELIXR-C cargado.")
|
281 |
|
282 |
-
# Cargar QFormer (ELIXR-B Text)
|
283 |
print("Cargando QFormer (ELIXR-B Text)...")
|
284 |
qformer_model_path = os.path.join(MODEL_DOWNLOAD_DIR, 'pax-elixr-b-text')
|
285 |
qformer_model = tf.saved_model.load(qformer_model_path)
|
@@ -289,143 +191,255 @@ try:
|
|
289 |
models_loaded = True
|
290 |
end_time = time.time()
|
291 |
print(f"--- Modelos cargados globalmente con éxito en {end_time - start_time:.2f} segundos ---")
|
292 |
-
|
293 |
except Exception as e:
|
294 |
models_loaded = False
|
295 |
-
print(f"--- ERROR CRÍTICO DURANTE LA CARGA GLOBAL DE MODELOS ---")
|
296 |
-
print(e)
|
297 |
-
traceback.print_exc()
|
298 |
-
# Gradio se iniciará, pero la función de análisis fallará.
|
299 |
|
300 |
# --- Función Principal de Procesamiento para Gradio ---
|
301 |
-
def
|
302 |
-
"""
|
303 |
if not models_loaded:
|
304 |
raise gr.Error("Error: Los modelos no se pudieron cargar. La aplicación no puede procesar imágenes.")
|
305 |
if image_pil is None:
|
306 |
-
#
|
307 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
print("\n--- Iniciando evaluación para nueva imagen ---")
|
310 |
start_process_time = time.time()
|
311 |
-
|
312 |
try:
|
313 |
-
# 1. Convertir
|
314 |
-
# Gradio con type="pil" ya la entrega como objeto PIL
|
315 |
img_np = np.array(image_pil.convert('L'))
|
316 |
-
|
317 |
-
|
318 |
-
# 2. Generar Embedding de Imagen
|
319 |
-
print("Generando embedding de imagen...")
|
320 |
image_embedding = generate_image_embedding(img_np, elixrc_infer_global, qformer_infer_global)
|
321 |
-
|
322 |
-
|
323 |
-
# 3. Calcular Similitudes y Clasificar
|
324 |
-
print("Calculando similitudes y clasificando criterios...")
|
325 |
detailed_results = calculate_similarities_and_classify(image_embedding, bert_preprocessor_global, qformer_infer_global)
|
326 |
-
|
327 |
-
|
328 |
-
# 4. Formatear Resultados para Gradio
|
329 |
-
output_data = []
|
330 |
-
passed_count = 0
|
331 |
-
total_count = 0
|
332 |
for criterion, details in detailed_results.items():
|
333 |
total_count += 1
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
output_data.append([
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
assessment_comp,
|
345 |
-
assessment_simp
|
346 |
-
])
|
347 |
-
if assessment_comp == "PASS":
|
348 |
-
passed_count += 1
|
349 |
-
|
350 |
-
# Crear DataFrame
|
351 |
-
df_results = pd.DataFrame(output_data, columns=[
|
352 |
-
"Criterion", "Sim (+)", "Sim (-)", "Difference", "Assessment (Comp)", "Assessment (Simp)"
|
353 |
-
])
|
354 |
-
|
355 |
-
# Calcular etiqueta de calidad general
|
356 |
-
overall_quality = "Error"
|
357 |
if total_count > 0:
|
358 |
pass_rate = passed_count / total_count
|
359 |
if pass_rate >= 0.85: overall_quality = "Excellent"
|
360 |
elif pass_rate >= 0.70: overall_quality = "Good"
|
361 |
elif pass_rate >= 0.50: overall_quality = "Fair"
|
362 |
else: overall_quality = "Poor"
|
363 |
-
quality_label = f"{overall_quality} ({passed_count}/{total_count}
|
364 |
-
|
365 |
end_process_time = time.time()
|
366 |
-
print(f"--- Evaluación completada en {end_process_time - start_process_time:.2f}
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
|
|
|
|
|
|
|
|
|
|
371 |
except Exception as e:
|
372 |
-
print(f"Error durante
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
#
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
gr.Markdown(
|
387 |
-
"""
|
388 |
-
# Chest X-ray Technical Quality Assessment
|
389 |
-
Upload a chest X-ray image (PNG, JPG, etc.) to evaluate its technical quality based on 7 standard criteria
|
390 |
-
using the ELIXR model family (comparative strategy: Positive vs Negative prompts).
|
391 |
-
**Note:** Model loading on startup might take a minute. Processing an image can take 10-30 seconds depending on server load.
|
392 |
-
"""
|
393 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
394 |
with gr.Row():
|
395 |
-
|
396 |
-
|
397 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
398 |
# Añadir ejemplos si tienes imágenes de ejemplo
|
399 |
-
# Asegúrate de que la carpeta 'examples' exista y contenga las imágenes
|
400 |
# gr.Examples(
|
401 |
-
# examples=[os.path.join("examples", "sample_cxr.png")],
|
402 |
-
# inputs=input_image
|
403 |
# )
|
|
|
|
|
|
|
|
|
|
|
|
|
404 |
with gr.Column(scale=2):
|
405 |
-
|
406 |
-
#
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
|
|
|
|
|
|
|
|
412 |
)
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
420 |
)
|
421 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
422 |
# --- Iniciar la Aplicación Gradio ---
|
423 |
-
# Al desplegar en Spaces, Gradio se encarga de esto automáticamente.
|
424 |
-
# Para ejecutar localmente: demo.launch()
|
425 |
-
# Para Spaces, es mejor dejar que HF maneje el launch.
|
426 |
-
# demo.launch(share=True) # Para obtener un link público temporal si corres localmente
|
427 |
if __name__ == "__main__":
|
428 |
-
#
|
429 |
-
# server_name="0.0.0.0" para permitir conexiones de red local
|
430 |
# server_port=7860 es el puerto estándar de HF Spaces
|
431 |
-
|
|
|
|
15 |
|
16 |
# --- Configuración ---
|
17 |
MODEL_REPO_ID = "google/cxr-foundation"
|
18 |
+
MODEL_DOWNLOAD_DIR = './hf_cxr_foundation_space'
|
19 |
+
SIMILARITY_DIFFERENCE_THRESHOLD = 0.1
|
20 |
+
POSITIVE_SIMILARITY_THRESHOLD = 0.1
|
|
|
21 |
print(f"Usando umbrales: Comp Δ={SIMILARITY_DIFFERENCE_THRESHOLD}, Simp τ={POSITIVE_SIMILARITY_THRESHOLD}")
|
22 |
|
23 |
# --- Prompts ---
|
|
|
30 |
"cropped image", "scapulae overlying lungs", "blurred image", "obscuring artifact"
|
31 |
]
|
32 |
|
33 |
+
# --- Funciones Auxiliares (MISMAS que en la versión anterior de Gradio) ---
|
34 |
+
# @tf.function(input_signature=[tf.TensorSpec(shape=[None], dtype=tf.string)])
|
35 |
+
# def preprocess_text(text):
|
36 |
+
# return bert_preprocessor_global(text) # Asume que bert_preprocessor_global está cargado
|
|
|
37 |
|
38 |
def bert_tokenize(text, preprocessor):
|
39 |
+
if preprocessor is None: raise ValueError("BERT preprocessor no está cargado.")
|
|
|
|
|
40 |
if not isinstance(text, str): text = str(text)
|
|
|
|
|
41 |
out = preprocessor(tf.constant([text.lower()]))
|
|
|
|
|
42 |
ids = out['input_word_ids'].numpy().astype(np.int32)
|
43 |
masks = out['input_mask'].numpy().astype(np.float32)
|
44 |
paddings = 1.0 - masks
|
|
|
|
|
45 |
end_token_idx = (ids == 102)
|
46 |
ids[end_token_idx] = 0
|
47 |
paddings[end_token_idx] = 1.0
|
|
|
|
|
|
|
48 |
if ids.ndim == 2: ids = np.expand_dims(ids, axis=1)
|
49 |
if paddings.ndim == 2: paddings = np.expand_dims(paddings, axis=1)
|
|
|
|
|
50 |
expected_shape = (1, 1, 128)
|
51 |
if ids.shape != expected_shape:
|
|
|
52 |
if ids.shape == (1,128): ids = np.expand_dims(ids, axis=1)
|
53 |
else: raise ValueError(f"Shape incorrecta para ids: {ids.shape}, esperado {expected_shape}")
|
54 |
if paddings.shape != expected_shape:
|
55 |
if paddings.shape == (1,128): paddings = np.expand_dims(paddings, axis=1)
|
56 |
else: raise ValueError(f"Shape incorrecta para paddings: {paddings.shape}, esperado {expected_shape}")
|
|
|
57 |
return ids, paddings
|
58 |
|
59 |
def png_to_tfexample(image_array: np.ndarray) -> tf.train.Example:
|
|
|
60 |
if image_array.ndim == 3 and image_array.shape[2] == 1:
|
61 |
+
image_array = np.squeeze(image_array, axis=2)
|
62 |
elif image_array.ndim != 2:
|
63 |
+
raise ValueError(f'Array debe ser 2-D. Dimensiones: {image_array.ndim}')
|
|
|
64 |
image = image_array.astype(np.float32)
|
65 |
+
min_val, max_val = image.min(), image.max()
|
|
|
|
|
|
|
66 |
if max_val <= min_val:
|
|
|
|
|
67 |
if image_array.dtype == np.uint8 or (min_val >= 0 and max_val <= 255):
|
68 |
+
pixel_array = image.astype(np.uint8); bitdepth = 8
|
69 |
+
else:
|
70 |
+
pixel_array = np.zeros_like(image, dtype=np.uint16); bitdepth = 16
|
|
|
|
|
71 |
else:
|
72 |
+
image -= min_val
|
73 |
current_max = max_val - min_val
|
|
|
74 |
if image_array.dtype != np.uint8:
|
75 |
image *= 65535 / current_max
|
76 |
+
pixel_array = image.astype(np.uint16); bitdepth = 16
|
|
|
77 |
else:
|
|
|
|
|
|
|
78 |
image *= 255 / current_max
|
79 |
+
pixel_array = image.astype(np.uint8); bitdepth = 8
|
|
|
|
|
|
|
80 |
output = io.BytesIO()
|
81 |
+
png.Writer(width=pixel_array.shape[1], height=pixel_array.shape[0], greyscale=True, bitdepth=bitdepth).write(output, pixel_array.tolist())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
example = tf.train.Example()
|
83 |
features = example.features.feature
|
84 |
+
features['image/encoded'].bytes_list.value.append(output.getvalue())
|
85 |
features['image/format'].bytes_list.value.append(b'png')
|
86 |
return example
|
87 |
|
88 |
def generate_image_embedding(img_np, elixrc_infer, qformer_infer):
|
89 |
+
if elixrc_infer is None or qformer_infer is None: raise ValueError("Modelos ELIXR-C o QFormer no cargados.")
|
|
|
|
|
|
|
90 |
try:
|
|
|
91 |
serialized_img_tf_example = png_to_tfexample(img_np).SerializeToString()
|
92 |
elixrc_output = elixrc_infer(input_example=tf.constant([serialized_img_tf_example]))
|
93 |
elixrc_embedding = elixrc_output['feature_maps_0'].numpy()
|
|
|
|
|
|
|
94 |
qformer_input_img = {
|
95 |
'image_feature': elixrc_embedding.tolist(),
|
96 |
+
'ids': np.zeros((1, 1, 128), dtype=np.int32).tolist(),
|
97 |
+
'paddings': np.ones((1, 1, 128), dtype=np.float32).tolist(),
|
98 |
}
|
99 |
qformer_output_img = qformer_infer(**qformer_input_img)
|
100 |
image_embedding = qformer_output_img['all_contrastive_img_emb'].numpy()
|
|
|
|
|
101 |
if image_embedding.ndim > 2:
|
102 |
+
image_embedding = np.mean(image_embedding, axis=tuple(range(1, image_embedding.ndim - 1)))
|
103 |
+
if image_embedding.ndim == 1: image_embedding = np.expand_dims(image_embedding, axis=0)
|
104 |
+
if image_embedding.ndim != 2: raise ValueError(f"Embedding final no tiene 2 dims: {image_embedding.shape}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
return image_embedding
|
|
|
106 |
except Exception as e:
|
107 |
+
print(f"Error generando embedding imagen: {e}"); traceback.print_exc(); raise
|
|
|
|
|
108 |
|
109 |
def calculate_similarities_and_classify(image_embedding, bert_preprocessor, qformer_infer):
|
110 |
+
if image_embedding is None: raise ValueError("Embedding imagen es None.")
|
|
|
111 |
if bert_preprocessor is None: raise ValueError("Preprocesador BERT es None.")
|
112 |
if qformer_infer is None: raise ValueError("QFormer es None.")
|
|
|
113 |
detailed_results = {}
|
114 |
+
print("\n--- Calculando similitudes ---")
|
|
|
115 |
for i in range(len(criteria_list_positive)):
|
116 |
+
positive_text, negative_text = criteria_list_positive[i], criteria_list_negative[i]
|
117 |
+
criterion_name = positive_text
|
118 |
+
print(f"Procesando: \"{criterion_name}\"")
|
|
|
|
|
119 |
similarity_positive, similarity_negative, difference = None, None, None
|
120 |
classification_comp, classification_simp = "ERROR", "ERROR"
|
|
|
121 |
try:
|
|
|
122 |
tokens_pos, paddings_pos = bert_tokenize(positive_text, bert_preprocessor)
|
123 |
+
qformer_input_pos = {'image_feature': np.zeros([1, 8, 8, 1376], dtype=np.float32).tolist(), 'ids': tokens_pos.tolist(), 'paddings': paddings_pos.tolist()}
|
124 |
+
text_embedding_pos = qformer_infer(**qformer_input_pos)['contrastive_txt_emb'].numpy()
|
|
|
|
|
|
|
125 |
if text_embedding_pos.ndim == 1: text_embedding_pos = np.expand_dims(text_embedding_pos, axis=0)
|
126 |
|
|
|
127 |
tokens_neg, paddings_neg = bert_tokenize(negative_text, bert_preprocessor)
|
128 |
+
qformer_input_neg = {'image_feature': np.zeros([1, 8, 8, 1376], dtype=np.float32).tolist(), 'ids': tokens_neg.tolist(), 'paddings': paddings_neg.tolist()}
|
129 |
+
text_embedding_neg = qformer_infer(**qformer_input_neg)['contrastive_txt_emb'].numpy()
|
|
|
|
|
|
|
130 |
if text_embedding_neg.ndim == 1: text_embedding_neg = np.expand_dims(text_embedding_neg, axis=0)
|
131 |
|
132 |
+
if image_embedding.shape[1] != text_embedding_pos.shape[1]: raise ValueError(f"Dim mismatch: Img ({image_embedding.shape[1]}) vs Pos ({text_embedding_pos.shape[1]})")
|
133 |
+
if image_embedding.shape[1] != text_embedding_neg.shape[1]: raise ValueError(f"Dim mismatch: Img ({image_embedding.shape[1]}) vs Neg ({text_embedding_neg.shape[1]})")
|
|
|
|
|
|
|
134 |
|
|
|
135 |
similarity_positive = cosine_similarity(image_embedding, text_embedding_pos)[0][0]
|
136 |
similarity_negative = cosine_similarity(image_embedding, text_embedding_neg)[0][0]
|
|
|
137 |
|
|
|
138 |
difference = similarity_positive - similarity_negative
|
139 |
classification_comp = "PASS" if difference > SIMILARITY_DIFFERENCE_THRESHOLD else "FAIL"
|
140 |
classification_simp = "PASS" if similarity_positive > POSITIVE_SIMILARITY_THRESHOLD else "FAIL"
|
141 |
+
print(f" Sim(+)={similarity_positive:.4f}, Sim(-)={similarity_negative:.4f}, Diff={difference:.4f} -> Comp:{classification_comp}, Simp:{classification_simp}")
|
|
|
142 |
except Exception as e:
|
143 |
+
print(f" ERROR criterio '{criterion_name}': {e}"); traceback.print_exc()
|
|
|
|
|
|
|
|
|
144 |
detailed_results[criterion_name] = {
|
145 |
+
'positive_prompt': positive_text, 'negative_prompt': negative_text,
|
|
|
146 |
'similarity_positive': float(similarity_positive) if similarity_positive is not None else None,
|
147 |
'similarity_negative': float(similarity_negative) if similarity_negative is not None else None,
|
148 |
'difference': float(difference) if difference is not None else None,
|
149 |
+
'classification_comparative': classification_comp, 'classification_simplified': classification_simp
|
|
|
150 |
}
|
151 |
return detailed_results
|
152 |
|
153 |
# --- Carga Global de Modelos ---
|
|
|
154 |
print("--- Iniciando carga global de modelos ---")
|
155 |
start_time = time.time()
|
156 |
models_loaded = False
|
157 |
bert_preprocessor_global = None
|
158 |
elixrc_infer_global = None
|
159 |
qformer_infer_global = None
|
|
|
160 |
try:
|
161 |
+
# Añadir token si es necesario (para repos privados o gated)
|
162 |
+
hf_token = os.environ.get("HF_TOKEN") # Leer token desde secretos del Space
|
163 |
+
# if hf_token:
|
164 |
+
# print("Usando HF_TOKEN para autenticación.")
|
165 |
+
# HfFolder.save_token(hf_token)
|
166 |
|
|
|
167 |
os.makedirs(MODEL_DOWNLOAD_DIR, exist_ok=True)
|
168 |
print(f"Descargando/verificando modelos en: {MODEL_DOWNLOAD_DIR}")
|
169 |
snapshot_download(repo_id=MODEL_REPO_ID, local_dir=MODEL_DOWNLOAD_DIR,
|
170 |
allow_patterns=['elixr-c-v2-pooled/*', 'pax-elixr-b-text/*'],
|
171 |
+
local_dir_use_symlinks=False, token=hf_token) # Pasar token aquí
|
172 |
print("Modelos descargados/verificados.")
|
173 |
|
|
|
174 |
print("Cargando Preprocesador BERT...")
|
|
|
175 |
bert_preprocess_handle = "https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3"
|
176 |
bert_preprocessor_global = tf_hub.KerasLayer(bert_preprocess_handle)
|
177 |
print("Preprocesador BERT cargado.")
|
178 |
|
|
|
179 |
print("Cargando ELIXR-C...")
|
180 |
elixrc_model_path = os.path.join(MODEL_DOWNLOAD_DIR, 'elixr-c-v2-pooled')
|
181 |
elixrc_model = tf.saved_model.load(elixrc_model_path)
|
182 |
elixrc_infer_global = elixrc_model.signatures['serving_default']
|
183 |
print("Modelo ELIXR-C cargado.")
|
184 |
|
|
|
185 |
print("Cargando QFormer (ELIXR-B Text)...")
|
186 |
qformer_model_path = os.path.join(MODEL_DOWNLOAD_DIR, 'pax-elixr-b-text')
|
187 |
qformer_model = tf.saved_model.load(qformer_model_path)
|
|
|
191 |
models_loaded = True
|
192 |
end_time = time.time()
|
193 |
print(f"--- Modelos cargados globalmente con éxito en {end_time - start_time:.2f} segundos ---")
|
|
|
194 |
except Exception as e:
|
195 |
models_loaded = False
|
196 |
+
print(f"--- ERROR CRÍTICO DURANTE LA CARGA GLOBAL DE MODELOS ---"); print(e); traceback.print_exc()
|
|
|
|
|
|
|
197 |
|
198 |
# --- Función Principal de Procesamiento para Gradio ---
|
199 |
+
def assess_quality_and_update_ui(image_pil):
|
200 |
+
"""Procesa la imagen y devuelve actualizaciones para la UI."""
|
201 |
if not models_loaded:
|
202 |
raise gr.Error("Error: Los modelos no se pudieron cargar. La aplicación no puede procesar imágenes.")
|
203 |
if image_pil is None:
|
204 |
+
# Devuelve valores por defecto/vacíos y controla la visibilidad
|
205 |
+
return (
|
206 |
+
gr.update(visible=True), # Muestra bienvenida
|
207 |
+
gr.update(visible=False), # Oculta resultados
|
208 |
+
None, # Borra imagen de salida
|
209 |
+
gr.update(value="N/A"), # Borra etiqueta
|
210 |
+
pd.DataFrame(), # Borra dataframe
|
211 |
+
None # Borra JSON
|
212 |
+
)
|
213 |
|
214 |
print("\n--- Iniciando evaluación para nueva imagen ---")
|
215 |
start_process_time = time.time()
|
|
|
216 |
try:
|
217 |
+
# 1. Convertir a NumPy
|
|
|
218 |
img_np = np.array(image_pil.convert('L'))
|
219 |
+
# 2. Generar Embedding
|
|
|
|
|
|
|
220 |
image_embedding = generate_image_embedding(img_np, elixrc_infer_global, qformer_infer_global)
|
221 |
+
# 3. Clasificar
|
|
|
|
|
|
|
222 |
detailed_results = calculate_similarities_and_classify(image_embedding, bert_preprocessor_global, qformer_infer_global)
|
223 |
+
# 4. Formatear Resultados
|
224 |
+
output_data, passed_count, total_count = [], 0, 0
|
|
|
|
|
|
|
|
|
225 |
for criterion, details in detailed_results.items():
|
226 |
total_count += 1
|
227 |
+
sim_pos = details['similarity_positive']
|
228 |
+
sim_neg = details['similarity_negative']
|
229 |
+
diff = details['difference']
|
230 |
+
comp = details['classification_comparative']
|
231 |
+
simp = details['classification_simplified']
|
232 |
+
output_data.append([ criterion, f"{sim_pos:.4f}" if sim_pos else "N/A",
|
233 |
+
f"{sim_neg:.4f}" if sim_neg else "N/A", f"{diff:.4f}" if diff else "N/A", comp, simp ])
|
234 |
+
if comp == "PASS": passed_count += 1
|
235 |
+
df_results = pd.DataFrame(output_data, columns=[ "Criterion", "Sim (+)", "Sim (-)", "Difference", "Assessment (Comp)", "Assessment (Simp)" ])
|
236 |
+
overall_quality = "Error"; pass_rate = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
if total_count > 0:
|
238 |
pass_rate = passed_count / total_count
|
239 |
if pass_rate >= 0.85: overall_quality = "Excellent"
|
240 |
elif pass_rate >= 0.70: overall_quality = "Good"
|
241 |
elif pass_rate >= 0.50: overall_quality = "Fair"
|
242 |
else: overall_quality = "Poor"
|
243 |
+
quality_label = f"{overall_quality} ({passed_count}/{total_count} passed)"
|
|
|
244 |
end_process_time = time.time()
|
245 |
+
print(f"--- Evaluación completada en {end_process_time - start_process_time:.2f} seg ---")
|
246 |
+
# Devolver resultados y actualizar visibilidad
|
247 |
+
return (
|
248 |
+
gr.update(visible=False), # Oculta bienvenida
|
249 |
+
gr.update(visible=True), # Muestra resultados
|
250 |
+
image_pil, # Muestra imagen procesada
|
251 |
+
gr.update(value=quality_label), # Actualiza etiqueta
|
252 |
+
df_results, # Actualiza dataframe
|
253 |
+
detailed_results # Actualiza JSON
|
254 |
+
)
|
255 |
except Exception as e:
|
256 |
+
print(f"Error durante procesamiento Gradio: {e}"); traceback.print_exc()
|
257 |
+
raise gr.Error(f"Error procesando imagen: {str(e)}")
|
258 |
+
|
259 |
+
# --- Función para Resetear la UI ---
|
260 |
+
def reset_ui():
|
261 |
+
print("Reseteando UI...")
|
262 |
+
return (
|
263 |
+
gr.update(visible=True), # Muestra bienvenida
|
264 |
+
gr.update(visible=False), # Oculta resultados
|
265 |
+
None, # Borra imagen de entrada
|
266 |
+
None, # Borra imagen de salida
|
267 |
+
gr.update(value="N/A"), # Borra etiqueta
|
268 |
+
pd.DataFrame(), # Borra dataframe
|
269 |
+
None # Borra JSON
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
)
|
271 |
+
|
272 |
+
# --- Definir Tema Oscuro Personalizado ---
|
273 |
+
# Inspirado en los colores del HTML original y Tailwind dark grays/blues
|
274 |
+
dark_theme = gr.themes.Default(
|
275 |
+
primary_hue=gr.themes.colors.blue, # Azul como color primario
|
276 |
+
secondary_hue=gr.themes.colors.blue, # Azul secundario
|
277 |
+
neutral_hue=gr.themes.colors.gray, # Gris neutro
|
278 |
+
font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"],
|
279 |
+
font_mono=[gr.themes.GoogleFont("JetBrains Mono"), "ui-monospace", "Consolas", "monospace"],
|
280 |
+
).set(
|
281 |
+
# Fondos
|
282 |
+
body_background_fill="#111827", # Fondo principal muy oscuro (gray-900)
|
283 |
+
background_fill_primary="#1f2937", # Fondo de componentes (gray-800)
|
284 |
+
background_fill_secondary="#374151", # Fondo secundario (gray-700)
|
285 |
+
block_background_fill="#1f2937", # Fondo de bloques (gray-800)
|
286 |
+
|
287 |
+
# Texto
|
288 |
+
body_text_color="#d1d5db", # Texto principal claro (gray-300)
|
289 |
+
text_color_subdued="#9ca3af", # Texto secundario (gray-400)
|
290 |
+
block_label_text_color="#d1d5db", # Etiquetas de bloque (gray-300)
|
291 |
+
block_title_text_color="#ffffff", # Títulos de bloque (blanco)
|
292 |
+
|
293 |
+
# Bordes
|
294 |
+
border_color_accent="#374151", # Borde (gray-700)
|
295 |
+
border_color_primary="#4b5563", # Borde primario (gray-600)
|
296 |
+
|
297 |
+
# Botones y Elementos Interactivos
|
298 |
+
button_primary_background_fill="*primary_600", # Usa color primario (azul)
|
299 |
+
button_primary_text_color="#ffffff",
|
300 |
+
button_secondary_background_fill="*neutral_700",
|
301 |
+
button_secondary_text_color="#ffffff",
|
302 |
+
input_background_fill="#374151", # Fondo de inputs (gray-700)
|
303 |
+
input_border_color="#4b5563", # Borde de inputs (gray-600)
|
304 |
+
input_text_color="#ffffff", # Texto en inputs
|
305 |
+
|
306 |
+
# Sombras y Radios
|
307 |
+
shadow_drop="rgba(0,0,0,0.2) 0px 2px 4px",
|
308 |
+
block_shadow="rgba(0,0,0,0.2) 0px 2px 5px",
|
309 |
+
radius_size="*radius_lg", # Bordes redondeados
|
310 |
+
)
|
311 |
+
|
312 |
+
|
313 |
+
# --- Definir la Interfaz Gradio con Bloques y Tema ---
|
314 |
+
with gr.Blocks(theme=dark_theme, title="CXR Quality Assessment") as demo:
|
315 |
+
# --- Cabecera ---
|
316 |
with gr.Row():
|
317 |
+
gr.Markdown(
|
318 |
+
"""
|
319 |
+
# <span style="color: #e5e7eb;">CXR Quality Assessment</span>
|
320 |
+
<p style="color: #9ca3af;">Evaluate chest X-ray technical quality using AI (ELIXR family)</p>
|
321 |
+
""", # Usar blanco/gris claro para texto cabecera
|
322 |
+
elem_id="app-header"
|
323 |
+
)
|
324 |
+
|
325 |
+
# --- Contenido Principal (Dos Columnas) ---
|
326 |
+
with gr.Row(equal_height=False): # Permitir alturas diferentes
|
327 |
+
|
328 |
+
# --- Columna Izquierda (Carga) ---
|
329 |
+
with gr.Column(scale=1, min_width=350):
|
330 |
+
gr.Markdown("### 1. Upload Image", elem_id="upload-title")
|
331 |
+
input_image = gr.Image(type="pil", label="Upload Chest X-ray", height=300) # Altura fija para imagen entrada
|
332 |
+
with gr.Row():
|
333 |
+
analyze_btn = gr.Button("Analyze Image", variant="primary", scale=2)
|
334 |
+
reset_btn = gr.Button("Reset", variant="secondary", scale=1)
|
335 |
# Añadir ejemplos si tienes imágenes de ejemplo
|
|
|
336 |
# gr.Examples(
|
337 |
+
# examples=[os.path.join("examples", "sample_cxr.png")],
|
338 |
+
# inputs=input_image, label="Example CXR"
|
339 |
# )
|
340 |
+
gr.Markdown(
|
341 |
+
"<p style='color:#9ca3af; font-size:0.9em;'>Model loading on startup takes ~1 min. Analysis takes ~15-40 sec.</p>"
|
342 |
+
)
|
343 |
+
|
344 |
+
|
345 |
+
# --- Columna Derecha (Bienvenida / Resultados) ---
|
346 |
with gr.Column(scale=2):
|
347 |
+
|
348 |
+
# --- Bloque de Bienvenida (Visible Inicialmente) ---
|
349 |
+
with gr.Column(visible=True, elem_id="welcome-section") as welcome_block:
|
350 |
+
gr.Markdown(
|
351 |
+
"""
|
352 |
+
### Welcome!
|
353 |
+
Upload a chest X-ray image (PNG, JPG, etc.) on the left panel and click "Analyze Image".
|
354 |
+
|
355 |
+
The system will evaluate its technical quality based on 7 standard criteria using the ELIXR model family.
|
356 |
+
The results will appear here once the analysis is complete.
|
357 |
+
""", elem_id="welcome-text"
|
358 |
)
|
359 |
+
# Podrías añadir un icono o imagen aquí si quieres
|
360 |
+
# gr.Image("path/to/welcome_icon.png", interactive=False, show_label=False, show_download_button=False)
|
361 |
+
|
362 |
+
|
363 |
+
# --- Bloque de Resultados (Oculto Inicialmente) ---
|
364 |
+
with gr.Column(visible=False, elem_id="results-section") as results_block:
|
365 |
+
gr.Markdown("### 2. Quality Assessment Results", elem_id="results-title")
|
366 |
+
with gr.Row(): # Fila para imagen de salida y resumen
|
367 |
+
with gr.Column(scale=1):
|
368 |
+
output_image = gr.Image(type="pil", label="Analyzed Image", interactive=False)
|
369 |
+
with gr.Column(scale=1):
|
370 |
+
gr.Markdown("#### Summary", elem_id="summary-title")
|
371 |
+
output_label = gr.Label(value="N/A", label="Overall Quality Estimate", elem_id="quality-label")
|
372 |
+
# Podríamos añadir más texto de resumen aquí si quisiéramos
|
373 |
+
|
374 |
+
gr.Markdown("#### Detailed Criteria Evaluation", elem_id="detailed-title")
|
375 |
+
output_dataframe = gr.DataFrame(
|
376 |
+
headers=["Criterion", "Sim (+)", "Sim (-)", "Difference", "Assessment (Comp)", "Assessment (Simp)"],
|
377 |
+
label=None, # Quitar etiqueta redundante
|
378 |
+
wrap=True,
|
379 |
+
# La altura ahora se maneja mejor automáticamente o con CSS
|
380 |
+
# row_count=(7, "dynamic") # Mostrar 7 filas, permitir scroll si hay más
|
381 |
+
max_rows=10, # Limitar filas visibles con scroll
|
382 |
+
overflow_row_behaviour="show_ends", # Muestra inicio/fin al hacer scroll
|
383 |
+
interactive=False, # No editable
|
384 |
+
elem_id="results-dataframe"
|
385 |
+
)
|
386 |
+
with gr.Accordion("Raw JSON Output (for debugging)", open=False):
|
387 |
+
output_json = gr.JSON(label=None)
|
388 |
+
|
389 |
+
gr.Markdown(
|
390 |
+
f"""
|
391 |
+
#### Technical Notes
|
392 |
+
* **Criterion:** Quality aspect evaluated.
|
393 |
+
* **Sim (+/-):** Cosine similarity with positive/negative prompt.
|
394 |
+
* **Difference:** Sim (+) - Sim (-).
|
395 |
+
* **Assessment (Comp):** PASS if Difference > {SIMILARITY_DIFFERENCE_THRESHOLD}. (Main Result)
|
396 |
+
* **Assessment (Simp):** PASS if Sim (+) > {POSITIVE_SIMILARITY_THRESHOLD}.
|
397 |
+
""", elem_id="notes-text"
|
398 |
+
)
|
399 |
+
|
400 |
+
# --- Pie de página ---
|
401 |
+
gr.Markdown(
|
402 |
+
"""
|
403 |
+
----
|
404 |
+
<p style='text-align:center; color:#9ca3af; font-size:0.8em;'>
|
405 |
+
CXR Quality Assessment Tool | Model: google/cxr-foundation | Interface: Gradio
|
406 |
+
</p>
|
407 |
+
""", elem_id="app-footer"
|
408 |
+
)
|
409 |
+
|
410 |
+
|
411 |
+
# --- Conexiones de Eventos ---
|
412 |
+
analyze_btn.click(
|
413 |
+
fn=assess_quality_and_update_ui,
|
414 |
+
inputs=[input_image],
|
415 |
+
outputs=[
|
416 |
+
welcome_block, # -> actualiza visibilidad bienvenida
|
417 |
+
results_block, # -> actualiza visibilidad resultados
|
418 |
+
output_image, # -> muestra imagen analizada
|
419 |
+
output_label, # -> actualiza etiqueta resumen
|
420 |
+
output_dataframe, # -> actualiza tabla
|
421 |
+
output_json # -> actualiza JSON
|
422 |
+
]
|
423 |
)
|
424 |
|
425 |
+
reset_btn.click(
|
426 |
+
fn=reset_ui,
|
427 |
+
inputs=None, # No necesita inputs
|
428 |
+
outputs=[
|
429 |
+
welcome_block,
|
430 |
+
results_block,
|
431 |
+
input_image, # -> limpia imagen entrada
|
432 |
+
output_image,
|
433 |
+
output_label,
|
434 |
+
output_dataframe,
|
435 |
+
output_json
|
436 |
+
]
|
437 |
+
)
|
438 |
+
|
439 |
+
|
440 |
# --- Iniciar la Aplicación Gradio ---
|
|
|
|
|
|
|
|
|
441 |
if __name__ == "__main__":
|
442 |
+
# server_name="0.0.0.0" para accesibilidad en red local
|
|
|
443 |
# server_port=7860 es el puerto estándar de HF Spaces
|
444 |
+
# auth=("user", "password") # Si quieres añadir autenticación básica localmente
|
445 |
+
demo.launch(server_name="0.0.0.0", server_port=7860) #, share=True) # Quita share=True para despliegue normal
|