Update app.py
Browse files
app.py
CHANGED
@@ -7,426 +7,329 @@ import tensorflow_text as tf_text
|
|
7 |
import tensorflow_hub as tf_hub
|
8 |
import numpy as np
|
9 |
from PIL import Image
|
10 |
-
from huggingface_hub import snapshot_download
|
11 |
from sklearn.metrics.pairwise import cosine_similarity
|
12 |
import traceback
|
13 |
import time
|
14 |
-
import pandas as pd # Para formatear la salida en tabla
|
15 |
|
16 |
# --- Configuración ---
|
17 |
MODEL_REPO_ID = "google/cxr-foundation"
|
18 |
-
MODEL_DOWNLOAD_DIR = './hf_cxr_foundation_space'
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
print(f"Usando umbrales: Comp Δ={SIMILARITY_DIFFERENCE_THRESHOLD}, Simp τ={POSITIVE_SIMILARITY_THRESHOLD}")
|
23 |
|
24 |
-
#
|
25 |
criteria_list_positive = [
|
26 |
-
"optimal centering
|
27 |
-
"
|
|
|
|
|
|
|
|
|
|
|
28 |
]
|
29 |
criteria_list_negative = [
|
30 |
-
"
|
31 |
-
"
|
|
|
|
|
|
|
|
|
|
|
32 |
]
|
33 |
|
34 |
-
# --- Funciones Auxiliares
|
35 |
-
# @tf.function(input_signature=[tf.TensorSpec(shape=[None], dtype=tf.string)]) # Puede ayudar rendimiento
|
36 |
-
def preprocess_text(text):
|
37 |
-
"""Función interna del preprocesador BERT."""
|
38 |
-
return bert_preprocessor_global(text)
|
39 |
-
|
40 |
def bert_tokenize(text, preprocessor):
|
41 |
-
"""Tokeniza texto usando el preprocesador BERT cargado globalmente."""
|
42 |
if preprocessor is None:
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
# Ejecutar el preprocesador
|
47 |
-
out = preprocessor(tf.constant([text.lower()]))
|
48 |
-
|
49 |
-
# Extraer y procesar IDs y máscaras
|
50 |
ids = out['input_word_ids'].numpy().astype(np.int32)
|
51 |
masks = out['input_mask'].numpy().astype(np.float32)
|
52 |
paddings = 1.0 - masks
|
53 |
-
|
54 |
-
# Reemplazar token [SEP] (102) por 0 y marcar como padding
|
55 |
end_token_idx = (ids == 102)
|
56 |
ids[end_token_idx] = 0
|
57 |
paddings[end_token_idx] = 1.0
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
if ids.ndim == 2: ids = np.expand_dims(ids, axis=1)
|
62 |
-
if paddings.ndim == 2: paddings = np.expand_dims(paddings, axis=1)
|
63 |
-
|
64 |
-
# Verificar formas finales
|
65 |
-
expected_shape = (1, 1, 128)
|
66 |
-
if ids.shape != expected_shape:
|
67 |
-
# Intentar reajustar si es necesario (puede pasar con algunas versiones)
|
68 |
-
if ids.shape == (1,128): ids = np.expand_dims(ids, axis=1)
|
69 |
-
else: raise ValueError(f"Shape incorrecta para ids: {ids.shape}, esperado {expected_shape}")
|
70 |
-
if paddings.shape != expected_shape:
|
71 |
-
if paddings.shape == (1,128): paddings = np.expand_dims(paddings, axis=1)
|
72 |
-
else: raise ValueError(f"Shape incorrecta para paddings: {paddings.shape}, esperado {expected_shape}")
|
73 |
-
|
74 |
return ids, paddings
|
75 |
|
76 |
def png_to_tfexample(image_array: np.ndarray) -> tf.train.Example:
|
77 |
-
|
78 |
if image_array.ndim == 3 and image_array.shape[2] == 1:
|
79 |
-
image_array = np.squeeze(image_array, axis=2)
|
80 |
elif image_array.ndim != 2:
|
81 |
-
raise ValueError(f'Array debe ser 2-D
|
82 |
-
|
83 |
image = image_array.astype(np.float32)
|
84 |
-
min_val = image.min()
|
85 |
-
max_val = image.max()
|
86 |
-
|
87 |
-
# Evitar división por cero si la imagen es constante
|
88 |
if max_val <= min_val:
|
89 |
-
# Si es constante, tratar como uint8 si el rango original lo permitía,
|
90 |
-
# o simplemente ponerla a 0 si es float.
|
91 |
if image_array.dtype == np.uint8 or (min_val >= 0 and max_val <= 255):
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
pixel_array = np.zeros_like(image, dtype=np.uint16)
|
96 |
-
bitdepth = 16
|
97 |
else:
|
98 |
-
image -= min_val
|
99 |
current_max = max_val - min_val
|
100 |
-
# Escalar a 16-bit para mayor precisión si no era uint8 originalmente
|
101 |
if image_array.dtype != np.uint8:
|
102 |
image *= 65535 / current_max
|
103 |
-
pixel_array = image.astype(np.uint16)
|
104 |
-
bitdepth = 16
|
105 |
else:
|
106 |
-
# Si era uint8, mantener el rango y tipo
|
107 |
-
# La resta del min ya la dejó en [0, current_max]
|
108 |
-
# Escalar a 255 si es necesario
|
109 |
image *= 255 / current_max
|
110 |
-
pixel_array = image.astype(np.uint8)
|
111 |
-
bitdepth = 8
|
112 |
-
|
113 |
-
# Codificar como PNG
|
114 |
output = io.BytesIO()
|
115 |
-
png.Writer(
|
116 |
-
|
117 |
-
height=pixel_array.shape[0],
|
118 |
-
greyscale=True,
|
119 |
-
bitdepth=bitdepth
|
120 |
-
).write(output, pixel_array.tolist())
|
121 |
-
png_bytes = output.getvalue()
|
122 |
-
|
123 |
-
# Crear tf.train.Example
|
124 |
example = tf.train.Example()
|
125 |
features = example.features.feature
|
126 |
-
features['image/encoded'].bytes_list.value.append(
|
127 |
features['image/format'].bytes_list.value.append(b'png')
|
128 |
return example
|
129 |
|
130 |
def generate_image_embedding(img_np, elixrc_infer, qformer_infer):
|
131 |
-
"""Genera embedding final de imagen."""
|
132 |
if elixrc_infer is None or qformer_infer is None:
|
133 |
raise ValueError("Modelos ELIXR-C o QFormer no cargados.")
|
134 |
-
|
135 |
try:
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
qformer_input_img = {
|
144 |
-
'image_feature': elixrc_embedding.tolist(),
|
145 |
-
'ids': np.zeros((1, 1, 128), dtype=np.int32).tolist(), # Texto vacío
|
146 |
-
'paddings': np.ones((1, 1, 128), dtype=np.float32).tolist(), # Todo padding
|
147 |
}
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
if
|
153 |
-
|
154 |
-
|
155 |
-
image_embedding,
|
156 |
-
axis=tuple(range(1, image_embedding.ndim - 1))
|
157 |
-
)
|
158 |
-
if image_embedding.ndim == 1:
|
159 |
-
image_embedding = np.expand_dims(image_embedding, axis=0)
|
160 |
-
elif image_embedding.ndim == 1:
|
161 |
-
image_embedding = np.expand_dims(image_embedding, axis=0) # Asegurar 2D
|
162 |
-
|
163 |
-
print(f" Embedding final imagen shape: {image_embedding.shape}")
|
164 |
-
if image_embedding.ndim != 2:
|
165 |
-
raise ValueError(f"Embedding final de imagen no tiene 2 dimensiones: {image_embedding.shape}")
|
166 |
-
return image_embedding
|
167 |
-
|
168 |
except Exception as e:
|
169 |
-
print(f"Error
|
170 |
traceback.print_exc()
|
171 |
-
raise
|
172 |
-
|
173 |
-
def calculate_similarities_and_classify(image_embedding, bert_preprocessor, qformer_infer
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
detailed_results = {}
|
180 |
-
print("\n--- Calculando similitudes y clasificando ---")
|
181 |
-
|
182 |
-
for i in range(len(criteria_list_positive)):
|
183 |
-
positive_text = criteria_list_positive[i]
|
184 |
-
negative_text = criteria_list_negative[i]
|
185 |
-
criterion_name = positive_text # Usar prompt positivo como clave
|
186 |
-
|
187 |
-
print(f"Procesando criterio: \"{criterion_name}\"")
|
188 |
-
similarity_positive, similarity_negative, difference = None, None, None
|
189 |
-
classification_comp, classification_simp = "ERROR", "ERROR"
|
190 |
-
|
191 |
try:
|
192 |
-
#
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
if text_embedding_neg.ndim == 1: text_embedding_neg = np.expand_dims(text_embedding_neg, axis=0)
|
209 |
-
|
210 |
-
# Verificar compatibilidad de dimensiones para similitud
|
211 |
-
if image_embedding.shape[1] != text_embedding_pos.shape[1]:
|
212 |
-
raise ValueError(f"Dimensión incompatible: Imagen ({image_embedding.shape[1]}) vs Texto Pos ({text_embedding_pos.shape[1]})")
|
213 |
-
if image_embedding.shape[1] != text_embedding_neg.shape[1]:
|
214 |
-
raise ValueError(f"Dimensión incompatible: Imagen ({image_embedding.shape[1]}) vs Texto Neg ({text_embedding_neg.shape[1]})")
|
215 |
-
|
216 |
-
# 3. Calcular Similitudes
|
217 |
-
similarity_positive = cosine_similarity(image_embedding, text_embedding_pos)[0][0]
|
218 |
-
similarity_negative = cosine_similarity(image_embedding, text_embedding_neg)[0][0]
|
219 |
-
print(f" Sim (+)={similarity_positive:.4f}, Sim (-)={similarity_negative:.4f}")
|
220 |
-
|
221 |
-
# 4. Clasificar
|
222 |
-
difference = similarity_positive - similarity_negative
|
223 |
-
classification_comp = "PASS" if difference > SIMILARITY_DIFFERENCE_THRESHOLD else "FAIL"
|
224 |
-
classification_simp = "PASS" if similarity_positive > POSITIVE_SIMILARITY_THRESHOLD else "FAIL"
|
225 |
-
print(f" Diff={difference:.4f} -> Comp: {classification_comp}, Simp: {classification_simp}")
|
226 |
-
|
227 |
except Exception as e:
|
228 |
-
print(f"
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
'
|
235 |
-
'
|
236 |
-
'
|
237 |
-
'similarity_negative': float(similarity_negative) if similarity_negative is not None else None,
|
238 |
-
'difference': float(difference) if difference is not None else None,
|
239 |
-
'classification_comparative': classification_comp,
|
240 |
-
'classification_simplified': classification_simp
|
241 |
}
|
242 |
-
return
|
243 |
|
244 |
# --- Carga Global de Modelos ---
|
245 |
-
|
246 |
-
print("--- Iniciando carga global de modelos ---")
|
247 |
start_time = time.time()
|
248 |
models_loaded = False
|
249 |
-
|
250 |
-
elixrc_infer_global = None
|
251 |
-
qformer_infer_global = None
|
252 |
-
|
253 |
try:
|
254 |
-
|
255 |
-
# if HfFolder.get_token() is None:
|
256 |
-
# print("Advertencia: No se encontró token de Hugging Face.")
|
257 |
-
# else:
|
258 |
-
# print("Token de Hugging Face encontrado.")
|
259 |
-
|
260 |
-
# Crear directorio si no existe
|
261 |
os.makedirs(MODEL_DOWNLOAD_DIR, exist_ok=True)
|
262 |
-
print(f"Descargando/verificando modelos en: {MODEL_DOWNLOAD_DIR}")
|
263 |
snapshot_download(repo_id=MODEL_REPO_ID, local_dir=MODEL_DOWNLOAD_DIR,
|
264 |
-
allow_patterns=['elixr-c-v2-pooled/*',
|
265 |
-
local_dir_use_symlinks=False)
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
print("Cargando Preprocesador BERT...")
|
270 |
-
# Usar handle explícito puede ser más robusto en algunos entornos
|
271 |
-
bert_preprocess_handle = "https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3"
|
272 |
-
bert_preprocessor_global = tf_hub.KerasLayer(bert_preprocess_handle)
|
273 |
-
print("Preprocesador BERT cargado.")
|
274 |
-
|
275 |
-
# Cargar ELIXR-C
|
276 |
-
print("Cargando ELIXR-C...")
|
277 |
-
elixrc_model_path = os.path.join(MODEL_DOWNLOAD_DIR, 'elixr-c-v2-pooled')
|
278 |
-
elixrc_model = tf.saved_model.load(elixrc_model_path)
|
279 |
-
elixrc_infer_global = elixrc_model.signatures['serving_default']
|
280 |
-
print("Modelo ELIXR-C cargado.")
|
281 |
-
|
282 |
-
# Cargar QFormer (ELIXR-B Text)
|
283 |
-
print("Cargando QFormer (ELIXR-B Text)...")
|
284 |
-
qformer_model_path = os.path.join(MODEL_DOWNLOAD_DIR, 'pax-elixr-b-text')
|
285 |
-
qformer_model = tf.saved_model.load(qformer_model_path)
|
286 |
-
qformer_infer_global = qformer_model.signatures['serving_default']
|
287 |
-
print("Modelo QFormer cargado.")
|
288 |
-
|
289 |
models_loaded = True
|
290 |
-
|
291 |
-
print(f"--- Modelos cargados globalmente con éxito en {end_time - start_time:.2f} segundos ---")
|
292 |
-
|
293 |
except Exception as e:
|
294 |
-
|
295 |
-
print(f"--- ERROR CRÍTICO DURANTE LA CARGA GLOBAL DE MODELOS ---")
|
296 |
-
print(e)
|
297 |
traceback.print_exc()
|
298 |
-
# Gradio se iniciará, pero la función de análisis fallará.
|
299 |
|
300 |
-
# --- Función Principal
|
301 |
-
def
|
302 |
-
"""Función que Gradio llamará con la imagen de entrada."""
|
303 |
if not models_loaded:
|
304 |
-
raise gr.Error("
|
305 |
if image_pil is None:
|
306 |
-
#
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
except Exception as e:
|
372 |
-
print(f"Error durante el procesamiento de la imagen en Gradio: {e}")
|
373 |
-
traceback.print_exc()
|
374 |
-
# Lanzar un gr.Error para mostrarlo en la UI de Gradio
|
375 |
-
raise gr.Error(f"Error procesando la imagen: {str(e)}")
|
376 |
-
|
377 |
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
""
|
385 |
-
|
386 |
-
|
387 |
-
"""
|
388 |
-
# Chest X-ray Technical Quality Assessment
|
389 |
-
Upload a chest X-ray image (PNG, JPG, etc.) to evaluate its technical quality based on 7 standard criteria
|
390 |
-
using the ELIXR model family (comparative strategy: Positive vs Negative prompts).
|
391 |
-
**Note:** Model loading on startup might take a minute. Processing an image can take 10-30 seconds depending on server load.
|
392 |
-
"""
|
393 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
394 |
with gr.Row():
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
404 |
with gr.Column(scale=2):
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
)
|
422 |
|
423 |
-
# --- Iniciar la Aplicación Gradio ---
|
424 |
-
# Al desplegar en Spaces, Gradio se encarga de esto automáticamente.
|
425 |
-
# Para ejecutar localmente: demo.launch()
|
426 |
-
# Para Spaces, es mejor dejar que HF maneje el launch.
|
427 |
-
# demo.launch(share=True) # Para obtener un link público temporal si corres localmente
|
428 |
if __name__ == "__main__":
|
429 |
-
|
430 |
-
# server_name="0.0.0.0" para permitir conexiones de red local
|
431 |
-
# server_port=7860 es el puerto estándar de HF Spaces
|
432 |
-
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
7 |
import tensorflow_hub as tf_hub
|
8 |
import numpy as np
|
9 |
from PIL import Image
|
10 |
+
from huggingface_hub import snapshot_download
|
11 |
from sklearn.metrics.pairwise import cosine_similarity
|
12 |
import traceback
|
13 |
import time
|
|
|
14 |
|
15 |
# --- Configuración ---
|
16 |
MODEL_REPO_ID = "google/cxr-foundation"
|
17 |
+
MODEL_DOWNLOAD_DIR = './hf_cxr_foundation_space'
|
18 |
+
SIMILARITY_DIFFERENCE_THRESHOLD = 0.1
|
19 |
+
POSITIVE_SIMILARITY_THRESHOLD = 0.1
|
20 |
+
|
21 |
print(f"Usando umbrales: Comp Δ={SIMILARITY_DIFFERENCE_THRESHOLD}, Simp τ={POSITIVE_SIMILARITY_THRESHOLD}")
|
22 |
|
23 |
+
# Prompts por defecto mejorados
|
24 |
criteria_list_positive = [
|
25 |
+
"optimal centering mediastinum",
|
26 |
+
"deep inspiration",
|
27 |
+
"adequate penetration",
|
28 |
+
"complete lung fields",
|
29 |
+
"scapulae retracted outside lungs",
|
30 |
+
"sharp contrast",
|
31 |
+
"artifact-free image"
|
32 |
]
|
33 |
criteria_list_negative = [
|
34 |
+
"poor centering",
|
35 |
+
"shallow inspiration",
|
36 |
+
"overexposed image",
|
37 |
+
"underexposed image",
|
38 |
+
"cropped lung fields",
|
39 |
+
"scapular overlay on lungs",
|
40 |
+
"blurred image with artifacts"
|
41 |
]
|
42 |
|
43 |
+
# --- Funciones Auxiliares ---
|
|
|
|
|
|
|
|
|
|
|
44 |
def bert_tokenize(text, preprocessor):
|
|
|
45 |
if preprocessor is None:
|
46 |
+
raise ValueError("BERT preprocessor no está cargado.")
|
47 |
+
text = str(text).lower()
|
48 |
+
out = preprocessor(tf.constant([text]))
|
|
|
|
|
|
|
|
|
49 |
ids = out['input_word_ids'].numpy().astype(np.int32)
|
50 |
masks = out['input_mask'].numpy().astype(np.float32)
|
51 |
paddings = 1.0 - masks
|
52 |
+
# Ajustes para el token de fin
|
|
|
53 |
end_token_idx = (ids == 102)
|
54 |
ids[end_token_idx] = 0
|
55 |
paddings[end_token_idx] = 1.0
|
56 |
+
# Asegurar forma (1,1,128)
|
57 |
+
if ids.ndim == 2: ids = np.expand_dims(ids, 1)
|
58 |
+
if paddings.ndim == 2: paddings = np.expand_dims(paddings, 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
return ids, paddings
|
60 |
|
61 |
def png_to_tfexample(image_array: np.ndarray) -> tf.train.Example:
|
62 |
+
# (sin cambios, convierte array NumPy a tf.Example PNG)
|
63 |
if image_array.ndim == 3 and image_array.shape[2] == 1:
|
64 |
+
image_array = np.squeeze(image_array, axis=2)
|
65 |
elif image_array.ndim != 2:
|
66 |
+
raise ValueError(f'Array debe ser 2-D. Dimensiones: {image_array.ndim}')
|
|
|
67 |
image = image_array.astype(np.float32)
|
68 |
+
min_val, max_val = image.min(), image.max()
|
|
|
|
|
|
|
69 |
if max_val <= min_val:
|
|
|
|
|
70 |
if image_array.dtype == np.uint8 or (min_val >= 0 and max_val <= 255):
|
71 |
+
pixel_array = image.astype(np.uint8); bitdepth = 8
|
72 |
+
else:
|
73 |
+
pixel_array = np.zeros_like(image, dtype=np.uint16); bitdepth = 16
|
|
|
|
|
74 |
else:
|
75 |
+
image -= min_val
|
76 |
current_max = max_val - min_val
|
|
|
77 |
if image_array.dtype != np.uint8:
|
78 |
image *= 65535 / current_max
|
79 |
+
pixel_array = image.astype(np.uint16); bitdepth = 16
|
|
|
80 |
else:
|
|
|
|
|
|
|
81 |
image *= 255 / current_max
|
82 |
+
pixel_array = image.astype(np.uint8); bitdepth = 8
|
|
|
|
|
|
|
83 |
output = io.BytesIO()
|
84 |
+
png.Writer(width=pixel_array.shape[1], height=pixel_array.shape[0],
|
85 |
+
greyscale=True, bitdepth=bitdepth).write(output, pixel_array.tolist())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
example = tf.train.Example()
|
87 |
features = example.features.feature
|
88 |
+
features['image/encoded'].bytes_list.value.append(output.getvalue())
|
89 |
features['image/format'].bytes_list.value.append(b'png')
|
90 |
return example
|
91 |
|
92 |
def generate_image_embedding(img_np, elixrc_infer, qformer_infer):
|
|
|
93 |
if elixrc_infer is None or qformer_infer is None:
|
94 |
raise ValueError("Modelos ELIXR-C o QFormer no cargados.")
|
|
|
95 |
try:
|
96 |
+
serialized = png_to_tfexample(img_np).SerializeToString()
|
97 |
+
elixrc_out = elixrc_infer(input_example=tf.constant([serialized]))
|
98 |
+
elixr_emb = elixrc_out['feature_maps_0'].numpy()
|
99 |
+
q_in = {
|
100 |
+
'image_feature': elixr_emb.tolist(),
|
101 |
+
'ids': np.zeros((1,1,128),dtype=np.int32).tolist(),
|
102 |
+
'paddings': np.ones((1,1,128),dtype=np.float32).tolist(),
|
|
|
|
|
|
|
|
|
103 |
}
|
104 |
+
q_out = qformer_infer(**q_in)
|
105 |
+
img_emb = q_out['all_contrastive_img_emb'].numpy()
|
106 |
+
if img_emb.ndim > 2:
|
107 |
+
img_emb = img_emb.mean(axis=tuple(range(1, img_emb.ndim-1)))
|
108 |
+
if img_emb.ndim == 1:
|
109 |
+
img_emb = img_emb[np.newaxis, :]
|
110 |
+
return img_emb
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
except Exception as e:
|
112 |
+
print(f"Error embedding imagen: {e}")
|
113 |
traceback.print_exc()
|
114 |
+
raise
|
115 |
+
|
116 |
+
def calculate_similarities_and_classify(image_embedding, bert_preprocessor, qformer_infer,
|
117 |
+
criteria_positive, criteria_negative):
|
118 |
+
results = {}
|
119 |
+
for pos, neg in zip(criteria_positive, criteria_negative):
|
120 |
+
sim_pos = sim_neg = diff = None
|
121 |
+
comp = simp = "ERROR"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
try:
|
123 |
+
# Embedding texto positivo
|
124 |
+
ids_p, pad_p = bert_tokenize(pos, bert_preprocessor)
|
125 |
+
inp_p = {'image_feature': np.zeros([1,8,8,1376],dtype=np.float32).tolist(),
|
126 |
+
'ids': ids_p.tolist(), 'paddings': pad_p.tolist()}
|
127 |
+
txt_p = qformer_infer(**inp_p)['contrastive_txt_emb'].numpy()
|
128 |
+
# Embedding texto negativo
|
129 |
+
ids_n, pad_n = bert_tokenize(neg, bert_preprocessor)
|
130 |
+
inp_n = {'image_feature': np.zeros([1,8,8,1376],dtype=np.float32).tolist(),
|
131 |
+
'ids': ids_n.tolist(), 'paddings': pad_n.tolist()}
|
132 |
+
txt_n = qformer_infer(**inp_n)['contrastive_txt_emb'].numpy()
|
133 |
+
|
134 |
+
sim_pos = float(cosine_similarity(image_embedding, txt_p.reshape(1,-1))[0][0])
|
135 |
+
sim_neg = float(cosine_similarity(image_embedding, txt_n.reshape(1,-1))[0][0])
|
136 |
+
diff = sim_pos - sim_neg
|
137 |
+
comp = "PASS" if diff > SIMILARITY_DIFFERENCE_THRESHOLD else "FAIL"
|
138 |
+
simp = "PASS" if sim_pos > POSITIVE_SIMILARITY_THRESHOLD else "FAIL"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
except Exception as e:
|
140 |
+
print(f"Error en criterio '{pos}': {e}")
|
141 |
+
results[pos] = {
|
142 |
+
'positive_prompt': pos,
|
143 |
+
'negative_prompt': neg,
|
144 |
+
'sim_pos': sim_pos,
|
145 |
+
'sim_neg': sim_neg,
|
146 |
+
'difference': diff,
|
147 |
+
'comp': comp,
|
148 |
+
'simp': simp
|
|
|
|
|
|
|
|
|
149 |
}
|
150 |
+
return results
|
151 |
|
152 |
# --- Carga Global de Modelos ---
|
153 |
+
print("--- Iniciando carga de modelos ---")
|
|
|
154 |
start_time = time.time()
|
155 |
models_loaded = False
|
156 |
+
bert_preproc = elixrc = qformer = None
|
|
|
|
|
|
|
157 |
try:
|
158 |
+
hf_token = os.environ.get("HF_TOKEN")
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
os.makedirs(MODEL_DOWNLOAD_DIR, exist_ok=True)
|
|
|
160 |
snapshot_download(repo_id=MODEL_REPO_ID, local_dir=MODEL_DOWNLOAD_DIR,
|
161 |
+
allow_patterns=['elixr-c-v2-pooled/*','pax-elixr-b-text/*'],
|
162 |
+
local_dir_use_symlinks=False, token=hf_token)
|
163 |
+
bert_preproc = tf_hub.KerasLayer("https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3")
|
164 |
+
elixr = tf.saved_model.load(os.path.join(MODEL_DOWNLOAD_DIR,'elixr-c-v2-pooled')).signatures['serving_default']
|
165 |
+
qformer = tf.saved_model.load(os.path.join(MODEL_DOWNLOAD_DIR,'pax-elixr-b-text')).signatures['serving_default']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
models_loaded = True
|
167 |
+
print(f"Modelos cargados en {time.time()-start_time:.2f}s")
|
|
|
|
|
168 |
except Exception as e:
|
169 |
+
print("ERROR cargando modelos:", e)
|
|
|
|
|
170 |
traceback.print_exc()
|
|
|
171 |
|
172 |
+
# --- Función Principal para Gradio ---
|
173 |
+
def assess_quality_and_update_ui(image_pil, pos_input, neg_input):
|
|
|
174 |
if not models_loaded:
|
175 |
+
raise gr.Error("No se pudieron cargar los modelos.")
|
176 |
if image_pil is None:
|
177 |
+
# devuelve: welcome visible, results oculto, imagen None, etiqueta N/A, html vacío, json vacío
|
178 |
+
return (
|
179 |
+
gr.update(visible=True),
|
180 |
+
gr.update(visible=False),
|
181 |
+
None,
|
182 |
+
"N/A",
|
183 |
+
"",
|
184 |
+
{}
|
185 |
+
)
|
186 |
+
# Parsear listas de prompts
|
187 |
+
pos_list = [l.strip() for l in pos_input.splitlines() if l.strip()]
|
188 |
+
neg_list = [l.strip() for l in neg_input.splitlines() if l.strip()]
|
189 |
+
if len(pos_list) != len(neg_list):
|
190 |
+
raise gr.Error("El número de prompts positivos y negativos debe coincidir.")
|
191 |
+
# Embedding imagen
|
192 |
+
img_np = np.array(image_pil.convert('L'))
|
193 |
+
emb = generate_image_embedding(img_np, elixr, qformer)
|
194 |
+
# Calcular similitudes
|
195 |
+
details = calculate_similarities_and_classify(emb, bert_preproc, qformer, pos_list, neg_list)
|
196 |
+
# Generar HTML
|
197 |
+
passed = total = 0
|
198 |
+
rows = ""
|
199 |
+
for crit, d in details.items():
|
200 |
+
total += 1
|
201 |
+
if d['comp']=="PASS': passed+=1
|
202 |
+
c_style = "color:#22c55e;font-weight:bold;" if d['comp']=="PASS" else "color:#ef4444;font-weight:bold;"
|
203 |
+
s_style = "color:#22c55e;font-weight:bold;" if d['simp']=="PASS" else "color:#ef4444;font-weight:bold;"
|
204 |
+
rows += (
|
205 |
+
f"<tr>"
|
206 |
+
f"<td>{crit}</td>"
|
207 |
+
f"<td>{d['sim_pos']:.4f}</td>"
|
208 |
+
f"<td>{d['sim_neg']:.4f}</td>"
|
209 |
+
f"<td>{d['difference']:.4f}</td>"
|
210 |
+
f"<td style='{c_style}'>{d['comp']}</td>"
|
211 |
+
f"<td style='{s_style}'>{d['simp']}</td>"
|
212 |
+
f"</tr>"
|
213 |
+
)
|
214 |
+
html = f"""
|
215 |
+
<table style="width:100%;border-collapse:collapse;">
|
216 |
+
<thead style="background:#f2f2f2;">
|
217 |
+
<tr>
|
218 |
+
<th>Criterion</th><th>Sim (+)</th><th>Sim (-)</th><th>Diff</th>
|
219 |
+
<th>Assessment (Comp)</th><th>Assessment (Simp)</th>
|
220 |
+
</tr>
|
221 |
+
</thead>
|
222 |
+
<tbody>{rows}</tbody>
|
223 |
+
</table>
|
224 |
+
"""
|
225 |
+
# Etiqueta general
|
226 |
+
pass_rate = passed/total if total>0 else 0
|
227 |
+
if pass_rate>=0.85: overall="Excellent"
|
228 |
+
elif pass_rate>=0.70: overall="Good"
|
229 |
+
elif pass_rate>=0.50: overall="Fair"
|
230 |
+
else: overall="Poor"
|
231 |
+
quality_label = f"{overall} ({passed}/{total} passed)"
|
232 |
+
# Devolver actualizaciones UI
|
233 |
+
return (
|
234 |
+
gr.update(visible=False),
|
235 |
+
gr.update(visible=True),
|
236 |
+
image_pil,
|
237 |
+
quality_label,
|
238 |
+
html,
|
239 |
+
details
|
240 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
|
242 |
+
def reset_ui():
|
243 |
+
return (
|
244 |
+
gr.update(visible=True),
|
245 |
+
gr.update(visible=False),
|
246 |
+
None, # limpia input_image
|
247 |
+
None, # limpia output_image
|
248 |
+
"N/A", # etiqueta calidad
|
249 |
+
"", # HTML
|
250 |
+
{} # JSON
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
)
|
252 |
+
|
253 |
+
# --- Definir Tema ---
|
254 |
+
dark_theme = gr.themes.Default(
|
255 |
+
primary_hue=gr.themes.colors.blue,
|
256 |
+
secondary_hue=gr.themes.colors.blue,
|
257 |
+
neutral_hue=gr.themes.colors.gray,
|
258 |
+
font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"],
|
259 |
+
font_mono=[gr.themes.GoogleFont("JetBrains Mono"), "ui-monospace", "Consolas", "monospace"],
|
260 |
+
).set(
|
261 |
+
body_background_fill="#111827",
|
262 |
+
background_fill_primary="#1f2937",
|
263 |
+
background_fill_secondary="#374151",
|
264 |
+
block_background_fill="#1f2937",
|
265 |
+
body_text_color="#d1d5db",
|
266 |
+
block_label_text_color="#d1d5db",
|
267 |
+
block_title_text_color="#ffffff",
|
268 |
+
border_color_accent="#374151",
|
269 |
+
border_color_primary="#4b5563",
|
270 |
+
button_primary_background_fill="*primary_600",
|
271 |
+
button_primary_text_color="#ffffff",
|
272 |
+
button_secondary_background_fill="*neutral_700",
|
273 |
+
button_secondary_text_color="#ffffff",
|
274 |
+
input_background_fill="#374151",
|
275 |
+
input_border_color="#4b5563",
|
276 |
+
shadow_drop="rgba(0,0,0,0.2) 0px 2px 4px",
|
277 |
+
block_shadow="rgba(0,0,0,0.2) 0px 2px 5px",
|
278 |
+
)
|
279 |
+
|
280 |
+
# --- Interfaz Gradio ---
|
281 |
+
with gr.Blocks(theme=dark_theme, title="CXR Quality Assessment") as demo:
|
282 |
+
# Cabecera
|
283 |
+
gr.Markdown("""
|
284 |
+
# <span style="color: #e5e7eb;">CXR Quality Assessment</span>
|
285 |
+
<p style="color: #9ca3af;">Evalúa la calidad técnica de radiografías de tórax con AI</p>
|
286 |
+
""")
|
287 |
+
# Prompts editables
|
288 |
with gr.Row():
|
289 |
+
positive_prompts_input = gr.Textarea(
|
290 |
+
label="Prompts Positivos (uno por línea)",
|
291 |
+
value="\n".join(criteria_list_positive),
|
292 |
+
lines=7
|
293 |
+
)
|
294 |
+
negative_prompts_input = gr.Textarea(
|
295 |
+
label="Prompts Negativos (uno por línea)",
|
296 |
+
value="\n".join(criteria_list_negative),
|
297 |
+
lines=7
|
298 |
+
)
|
299 |
+
# Contenido principal
|
300 |
+
with gr.Row(equal_height=False):
|
301 |
+
with gr.Column(scale=1, min_width=300):
|
302 |
+
gr.Markdown("### 1. Carga de Imagen")
|
303 |
+
input_image = gr.Image(type="pil", label="Sube tu CXR", height=300)
|
304 |
+
with gr.Row():
|
305 |
+
analyze_btn = gr.Button("Analizar", variant="primary")
|
306 |
+
reset_btn = gr.Button("Reset", variant="secondary")
|
307 |
+
gr.Markdown("<p style='color:#9ca3af; font-size:0.9em;'>La carga de modelos tarda ~1 min; el análisis ~15–40 s.</p>")
|
308 |
with gr.Column(scale=2):
|
309 |
+
with gr.Column(visible=True) as welcome_block:
|
310 |
+
gr.Markdown("### ¡Bienvenido! Sube una radiografía y haz clic en «Analizar».")
|
311 |
+
with gr.Column(visible=False) as results_block:
|
312 |
+
gr.Markdown("### 2. Resultados")
|
313 |
+
with gr.Row():
|
314 |
+
output_image = gr.Image(type="pil", label="Imagen Analizada", interactive=False)
|
315 |
+
with gr.Column():
|
316 |
+
gr.Markdown("#### Calidad Global")
|
317 |
+
output_label = gr.Label(value="N/A")
|
318 |
+
gr.Markdown("#### Evaluación Detallada")
|
319 |
+
output_html = gr.HTML()
|
320 |
+
with gr.Accordion("Ver JSON (debug)", open=False):
|
321 |
+
output_json = gr.JSON()
|
322 |
+
# Conexiones
|
323 |
+
analyze_btn.click(
|
324 |
+
fn=assess_quality_and_update_ui,
|
325 |
+
inputs=[input_image, positive_prompts_input, negative_prompts_input],
|
326 |
+
outputs=[welcome_block, results_block, output_image, output_label, output_html, output_json]
|
327 |
+
)
|
328 |
+
reset_btn.click(
|
329 |
+
fn=reset_ui,
|
330 |
+
inputs=None,
|
331 |
+
outputs=[welcome_block, results_block, input_image, output_image, output_label, output_html, output_json]
|
332 |
)
|
333 |
|
|
|
|
|
|
|
|
|
|
|
334 |
if __name__ == "__main__":
|
335 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|