Spaces:
Configuration error
Configuration error
| from __future__ import annotations | |
| import asyncio | |
| import time | |
| from contextlib import asynccontextmanager | |
| from io import BytesIO | |
| from typing import Annotated, Literal, OrderedDict | |
| from fastapi import ( | |
| FastAPI, | |
| Form, | |
| Query, | |
| Response, | |
| UploadFile, | |
| WebSocket, | |
| WebSocketDisconnect, | |
| ) | |
| from fastapi.responses import StreamingResponse | |
| from fastapi.websockets import WebSocketState | |
| from faster_whisper import WhisperModel | |
| from faster_whisper.vad import VadOptions, get_speech_timestamps | |
| from faster_whisper_server import utils | |
| from faster_whisper_server.asr import FasterWhisperASR | |
| from faster_whisper_server.audio import AudioStream, audio_samples_from_file | |
| from faster_whisper_server.config import ( | |
| SAMPLES_PER_SECOND, | |
| Language, | |
| Model, | |
| ResponseFormat, | |
| config, | |
| ) | |
| from faster_whisper_server.logger import logger | |
| from faster_whisper_server.server_models import ( | |
| TranscriptionJsonResponse, | |
| TranscriptionVerboseJsonResponse, | |
| ) | |
| from faster_whisper_server.transcriber import audio_transcriber | |
| models: OrderedDict[Model, WhisperModel] = OrderedDict() | |
| def load_model(model_name: Model) -> WhisperModel: | |
| if model_name in models: | |
| logger.debug(f"{model_name} model already loaded") | |
| return models[model_name] | |
| if len(models) >= config.max_models: | |
| oldest_model_name = next(iter(models)) | |
| logger.info( | |
| f"Max models ({config.max_models}) reached. Unloading the oldest model: {oldest_model_name}" | |
| ) | |
| del models[oldest_model_name] | |
| logger.debug(f"Loading {model_name}") | |
| start = time.perf_counter() | |
| whisper = WhisperModel( | |
| model_name, | |
| device=config.whisper.inference_device, | |
| compute_type=config.whisper.compute_type, | |
| ) | |
| logger.info( | |
| f"Loaded {model_name} loaded in {time.perf_counter() - start:.2f} seconds. {config.whisper.inference_device}({config.whisper.compute_type}) will be used for inference." | |
| ) | |
| models[model_name] = whisper | |
| return whisper | |
| async def lifespan(_: FastAPI): | |
| load_model(config.whisper.model) | |
| yield | |
| for model in models.keys(): | |
| logger.info(f"Unloading {model}") | |
| del models[model] | |
| app = FastAPI(lifespan=lifespan) | |
| def health() -> Response: | |
| return Response(status_code=200, content="OK") | |
| def translate_file( | |
| file: Annotated[UploadFile, Form()], | |
| model: Annotated[Model, Form()] = config.whisper.model, | |
| prompt: Annotated[str | None, Form()] = None, | |
| response_format: Annotated[ResponseFormat, Form()] = config.default_response_format, | |
| temperature: Annotated[float, Form()] = 0.0, | |
| stream: Annotated[bool, Form()] = False, | |
| ): | |
| start = time.perf_counter() | |
| whisper = load_model(model) | |
| segments, transcription_info = whisper.transcribe( | |
| file.file, | |
| task="translate", | |
| initial_prompt=prompt, | |
| temperature=temperature, | |
| vad_filter=True, | |
| ) | |
| def segment_responses(): | |
| for segment in segments: | |
| if response_format == ResponseFormat.TEXT: | |
| yield segment.text | |
| elif response_format == ResponseFormat.JSON: | |
| yield TranscriptionJsonResponse.from_segments( | |
| [segment] | |
| ).model_dump_json() | |
| elif response_format == ResponseFormat.VERBOSE_JSON: | |
| yield TranscriptionVerboseJsonResponse.from_segment( | |
| segment, transcription_info | |
| ).model_dump_json() | |
| if not stream: | |
| segments = list(segments) | |
| logger.info( | |
| f"Translated {transcription_info.duration}({transcription_info.duration_after_vad}) seconds of audio in {time.perf_counter() - start:.2f} seconds" | |
| ) | |
| if response_format == ResponseFormat.TEXT: | |
| return utils.segments_text(segments) | |
| elif response_format == ResponseFormat.JSON: | |
| return TranscriptionJsonResponse.from_segments(segments) | |
| elif response_format == ResponseFormat.VERBOSE_JSON: | |
| return TranscriptionVerboseJsonResponse.from_segments( | |
| segments, transcription_info | |
| ) | |
| else: | |
| return StreamingResponse(segment_responses(), media_type="text/event-stream") | |
| # https://platform.openai.com/docs/api-reference/audio/createTranscription | |
| # https://github.com/openai/openai-openapi/blob/master/openapi.yaml#L8915 | |
| def transcribe_file( | |
| file: Annotated[UploadFile, Form()], | |
| model: Annotated[Model, Form()] = config.whisper.model, | |
| language: Annotated[Language | None, Form()] = config.default_language, | |
| prompt: Annotated[str | None, Form()] = None, | |
| response_format: Annotated[ResponseFormat, Form()] = config.default_response_format, | |
| temperature: Annotated[float, Form()] = 0.0, | |
| timestamp_granularities: Annotated[ | |
| list[Literal["segments"] | Literal["words"]], | |
| Form(alias="timestamp_granularities[]"), | |
| ] = ["segments"], | |
| stream: Annotated[bool, Form()] = False, | |
| ): | |
| start = time.perf_counter() | |
| whisper = load_model(model) | |
| segments, transcription_info = whisper.transcribe( | |
| file.file, | |
| task="transcribe", | |
| language=language, | |
| initial_prompt=prompt, | |
| word_timestamps="words" in timestamp_granularities, | |
| temperature=temperature, | |
| vad_filter=True, | |
| ) | |
| def segment_responses(): | |
| for segment in segments: | |
| logger.info( | |
| f"Transcribed {segment.end - segment.start} seconds of audio in {time.perf_counter() - start:.2f} seconds" | |
| ) | |
| if response_format == ResponseFormat.TEXT: | |
| yield segment.text | |
| elif response_format == ResponseFormat.JSON: | |
| yield TranscriptionJsonResponse.from_segments( | |
| [segment] | |
| ).model_dump_json() | |
| elif response_format == ResponseFormat.VERBOSE_JSON: | |
| yield TranscriptionVerboseJsonResponse.from_segment( | |
| segment, transcription_info | |
| ).model_dump_json() | |
| if not stream: | |
| segments = list(segments) | |
| logger.info( | |
| f"Transcribed {transcription_info.duration}({transcription_info.duration_after_vad}) seconds of audio in {time.perf_counter() - start:.2f} seconds" | |
| ) | |
| if response_format == ResponseFormat.TEXT: | |
| return utils.segments_text(segments) | |
| elif response_format == ResponseFormat.JSON: | |
| return TranscriptionJsonResponse.from_segments(segments) | |
| elif response_format == ResponseFormat.VERBOSE_JSON: | |
| return TranscriptionVerboseJsonResponse.from_segments( | |
| segments, transcription_info | |
| ) | |
| else: | |
| return StreamingResponse(segment_responses(), media_type="text/event-stream") | |
| async def audio_receiver(ws: WebSocket, audio_stream: AudioStream) -> None: | |
| try: | |
| while True: | |
| bytes_ = await asyncio.wait_for( | |
| ws.receive_bytes(), timeout=config.max_no_data_seconds | |
| ) | |
| logger.debug(f"Received {len(bytes_)} bytes of audio data") | |
| audio_samples = audio_samples_from_file(BytesIO(bytes_)) | |
| audio_stream.extend(audio_samples) | |
| if audio_stream.duration - config.inactivity_window_seconds >= 0: | |
| audio = audio_stream.after( | |
| audio_stream.duration - config.inactivity_window_seconds | |
| ) | |
| vad_opts = VadOptions(min_silence_duration_ms=500, speech_pad_ms=0) | |
| # NOTE: This is a synchronous operation that runs every time new data is received. | |
| # This shouldn't be an issue unless data is being received in tiny chunks or the user's machine is a potato. | |
| timestamps = get_speech_timestamps(audio.data, vad_opts) | |
| if len(timestamps) == 0: | |
| logger.info( | |
| f"No speech detected in the last {config.inactivity_window_seconds} seconds." | |
| ) | |
| break | |
| elif ( | |
| # last speech end time | |
| config.inactivity_window_seconds | |
| - timestamps[-1]["end"] / SAMPLES_PER_SECOND | |
| >= config.max_inactivity_seconds | |
| ): | |
| logger.info( | |
| f"Not enough speech in the last {config.inactivity_window_seconds} seconds." | |
| ) | |
| break | |
| except asyncio.TimeoutError: | |
| logger.info( | |
| f"No data received in {config.max_no_data_seconds} seconds. Closing the connection." | |
| ) | |
| except WebSocketDisconnect as e: | |
| logger.info(f"Client disconnected: {e}") | |
| audio_stream.close() | |
| async def transcribe_stream( | |
| ws: WebSocket, | |
| model: Annotated[Model, Query()] = config.whisper.model, | |
| language: Annotated[Language | None, Query()] = config.default_language, | |
| response_format: Annotated[ | |
| ResponseFormat, Query() | |
| ] = config.default_response_format, | |
| temperature: Annotated[float, Query()] = 0.0, | |
| ) -> None: | |
| await ws.accept() | |
| transcribe_opts = { | |
| "language": language, | |
| "temperature": temperature, | |
| "vad_filter": True, | |
| "condition_on_previous_text": False, | |
| } | |
| whisper = load_model(model) | |
| asr = FasterWhisperASR(whisper, **transcribe_opts) | |
| audio_stream = AudioStream() | |
| async with asyncio.TaskGroup() as tg: | |
| tg.create_task(audio_receiver(ws, audio_stream)) | |
| async for transcription in audio_transcriber(asr, audio_stream): | |
| logger.debug(f"Sending transcription: {transcription.text}") | |
| if ws.client_state == WebSocketState.DISCONNECTED: | |
| break | |
| if response_format == ResponseFormat.TEXT: | |
| await ws.send_text(transcription.text) | |
| elif response_format == ResponseFormat.JSON: | |
| await ws.send_json( | |
| TranscriptionJsonResponse.from_transcription( | |
| transcription | |
| ).model_dump() | |
| ) | |
| elif response_format == ResponseFormat.VERBOSE_JSON: | |
| await ws.send_json( | |
| TranscriptionVerboseJsonResponse.from_transcription( | |
| transcription | |
| ).model_dump() | |
| ) | |
| if not ws.client_state == WebSocketState.DISCONNECTED: | |
| logger.info("Closing the connection.") | |
| await ws.close() | |