Spaces:
Configuration error
Configuration error
| from __future__ import annotations | |
| import asyncio | |
| from io import BytesIO | |
| import logging | |
| from typing import TYPE_CHECKING, Annotated | |
| from fastapi import ( | |
| APIRouter, | |
| Form, | |
| Query, | |
| Request, | |
| Response, | |
| UploadFile, | |
| WebSocket, | |
| WebSocketDisconnect, | |
| ) | |
| from fastapi.responses import StreamingResponse | |
| from fastapi.websockets import WebSocketState | |
| from faster_whisper.vad import VadOptions, get_speech_timestamps | |
| from pydantic import AfterValidator, Field | |
| from faster_whisper_server.api_models import ( | |
| DEFAULT_TIMESTAMP_GRANULARITIES, | |
| TIMESTAMP_GRANULARITIES_COMBINATIONS, | |
| CreateTranscriptionResponseJson, | |
| CreateTranscriptionResponseVerboseJson, | |
| TimestampGranularities, | |
| TranscriptionSegment, | |
| ) | |
| from faster_whisper_server.asr import FasterWhisperASR | |
| from faster_whisper_server.audio import AudioStream, audio_samples_from_file | |
| from faster_whisper_server.config import ( | |
| SAMPLES_PER_SECOND, | |
| Language, | |
| ResponseFormat, | |
| Task, | |
| ) | |
| from faster_whisper_server.dependencies import ConfigDependency, ModelManagerDependency, get_config | |
| from faster_whisper_server.text_utils import segments_to_srt, segments_to_text, segments_to_vtt | |
| from faster_whisper_server.transcriber import audio_transcriber | |
| if TYPE_CHECKING: | |
| from collections.abc import Generator, Iterable | |
| from faster_whisper.transcribe import TranscriptionInfo | |
| logger = logging.getLogger(__name__) | |
| router = APIRouter() | |
| def segments_to_response( | |
| segments: Iterable[TranscriptionSegment], | |
| transcription_info: TranscriptionInfo, | |
| response_format: ResponseFormat, | |
| ) -> Response: | |
| segments = list(segments) | |
| match response_format: | |
| case ResponseFormat.TEXT: | |
| return Response(segments_to_text(segments), media_type="text/plain") | |
| case ResponseFormat.JSON: | |
| return Response( | |
| CreateTranscriptionResponseJson.from_segments(segments).model_dump_json(), | |
| media_type="application/json", | |
| ) | |
| case ResponseFormat.VERBOSE_JSON: | |
| return Response( | |
| CreateTranscriptionResponseVerboseJson.from_segments(segments, transcription_info).model_dump_json(), | |
| media_type="application/json", | |
| ) | |
| case ResponseFormat.VTT: | |
| return Response( | |
| "".join(segments_to_vtt(segment, i) for i, segment in enumerate(segments)), media_type="text/vtt" | |
| ) | |
| case ResponseFormat.SRT: | |
| return Response( | |
| "".join(segments_to_srt(segment, i) for i, segment in enumerate(segments)), media_type="text/plain" | |
| ) | |
| def format_as_sse(data: str) -> str: | |
| return f"data: {data}\n\n" | |
| def segments_to_streaming_response( | |
| segments: Iterable[TranscriptionSegment], | |
| transcription_info: TranscriptionInfo, | |
| response_format: ResponseFormat, | |
| ) -> StreamingResponse: | |
| def segment_responses() -> Generator[str, None, None]: | |
| for i, segment in enumerate(segments): | |
| if response_format == ResponseFormat.TEXT: | |
| data = segment.text | |
| elif response_format == ResponseFormat.JSON: | |
| data = CreateTranscriptionResponseJson.from_segments([segment]).model_dump_json() | |
| elif response_format == ResponseFormat.VERBOSE_JSON: | |
| data = CreateTranscriptionResponseVerboseJson.from_segment( | |
| segment, transcription_info | |
| ).model_dump_json() | |
| elif response_format == ResponseFormat.VTT: | |
| data = segments_to_vtt(segment, i) | |
| elif response_format == ResponseFormat.SRT: | |
| data = segments_to_srt(segment, i) | |
| yield format_as_sse(data) | |
| return StreamingResponse(segment_responses(), media_type="text/event-stream") | |
| def handle_default_openai_model(model_name: str) -> str: | |
| """Exists because some callers may not be able override the default("whisper-1") model name. | |
| For example, https://github.com/open-webui/open-webui/issues/2248#issuecomment-2162997623. | |
| """ | |
| config = get_config() # HACK | |
| if model_name == "whisper-1": | |
| logger.info(f"{model_name} is not a valid model name. Using {config.whisper.model} instead.") | |
| return config.whisper.model | |
| return model_name | |
| ModelName = Annotated[ | |
| str, | |
| AfterValidator(handle_default_openai_model), | |
| Field( | |
| description="The ID of the model. You can get a list of available models by calling `/v1/models`.", | |
| examples=[ | |
| "Systran/faster-distil-whisper-large-v3", | |
| "bofenghuang/whisper-large-v2-cv11-french-ct2", | |
| ], | |
| ), | |
| ] | |
| def translate_file( | |
| config: ConfigDependency, | |
| model_manager: ModelManagerDependency, | |
| file: Annotated[UploadFile, Form()], | |
| model: Annotated[ModelName | None, Form()] = None, | |
| prompt: Annotated[str | None, Form()] = None, | |
| response_format: Annotated[ResponseFormat | None, Form()] = None, | |
| temperature: Annotated[float, Form()] = 0.0, | |
| stream: Annotated[bool, Form()] = False, | |
| vad_filter: Annotated[bool, Form()] = False, | |
| ) -> Response | StreamingResponse: | |
| if model is None: | |
| model = config.whisper.model | |
| if response_format is None: | |
| response_format = config.default_response_format | |
| with model_manager.load_model(model) as whisper: | |
| segments, transcription_info = whisper.transcribe( | |
| file.file, | |
| task=Task.TRANSLATE, | |
| initial_prompt=prompt, | |
| temperature=temperature, | |
| vad_filter=vad_filter, | |
| ) | |
| segments = TranscriptionSegment.from_faster_whisper_segments(segments) | |
| if stream: | |
| return segments_to_streaming_response(segments, transcription_info, response_format) | |
| else: | |
| return segments_to_response(segments, transcription_info, response_format) | |
| # HACK: Since Form() doesn't support `alias`, we need to use a workaround. | |
| async def get_timestamp_granularities(request: Request) -> TimestampGranularities: | |
| form = await request.form() | |
| if form.get("timestamp_granularities[]") is None: | |
| return DEFAULT_TIMESTAMP_GRANULARITIES | |
| timestamp_granularities = form.getlist("timestamp_granularities[]") | |
| assert ( | |
| timestamp_granularities in TIMESTAMP_GRANULARITIES_COMBINATIONS | |
| ), f"{timestamp_granularities} is not a valid value for `timestamp_granularities[]`." | |
| return timestamp_granularities | |
| # https://platform.openai.com/docs/api-reference/audio/createTranscription | |
| # https://github.com/openai/openai-openapi/blob/master/openapi.yaml#L8915 | |
| def transcribe_file( | |
| config: ConfigDependency, | |
| model_manager: ModelManagerDependency, | |
| request: Request, | |
| file: Annotated[UploadFile, Form()], | |
| model: Annotated[ModelName | None, Form()] = None, | |
| language: Annotated[Language | None, Form()] = None, | |
| prompt: Annotated[str | None, Form()] = None, | |
| response_format: Annotated[ResponseFormat | None, Form()] = None, | |
| temperature: Annotated[float, Form()] = 0.0, | |
| timestamp_granularities: Annotated[ | |
| TimestampGranularities, | |
| # WARN: `alias` doesn't actually work. | |
| Form(alias="timestamp_granularities[]"), | |
| ] = ["segment"], | |
| stream: Annotated[bool, Form()] = False, | |
| hotwords: Annotated[str | None, Form()] = None, | |
| vad_filter: Annotated[bool, Form()] = False, | |
| ) -> Response | StreamingResponse: | |
| if model is None: | |
| model = config.whisper.model | |
| if language is None: | |
| language = config.default_language | |
| if response_format is None: | |
| response_format = config.default_response_format | |
| timestamp_granularities = asyncio.run(get_timestamp_granularities(request)) | |
| if timestamp_granularities != DEFAULT_TIMESTAMP_GRANULARITIES and response_format != ResponseFormat.VERBOSE_JSON: | |
| logger.warning( | |
| "It only makes sense to provide `timestamp_granularities[]` when `response_format` is set to `verbose_json`. See https://platform.openai.com/docs/api-reference/audio/createTranscription#audio-createtranscription-timestamp_granularities." # noqa: E501 | |
| ) | |
| with model_manager.load_model(model) as whisper: | |
| segments, transcription_info = whisper.transcribe( | |
| file.file, | |
| task=Task.TRANSCRIBE, | |
| language=language, | |
| initial_prompt=prompt, | |
| word_timestamps="word" in timestamp_granularities, | |
| temperature=temperature, | |
| vad_filter=vad_filter, | |
| hotwords=hotwords, | |
| ) | |
| segments = TranscriptionSegment.from_faster_whisper_segments(segments) | |
| if stream: | |
| return segments_to_streaming_response(segments, transcription_info, response_format) | |
| else: | |
| return segments_to_response(segments, transcription_info, response_format) | |
| async def audio_receiver(ws: WebSocket, audio_stream: AudioStream) -> None: | |
| config = get_config() # HACK | |
| try: | |
| while True: | |
| bytes_ = await asyncio.wait_for(ws.receive_bytes(), timeout=config.max_no_data_seconds) | |
| logger.debug(f"Received {len(bytes_)} bytes of audio data") | |
| audio_samples = audio_samples_from_file(BytesIO(bytes_)) | |
| audio_stream.extend(audio_samples) | |
| if audio_stream.duration - config.inactivity_window_seconds >= 0: | |
| audio = audio_stream.after(audio_stream.duration - config.inactivity_window_seconds) | |
| vad_opts = VadOptions(min_silence_duration_ms=500, speech_pad_ms=0) | |
| # NOTE: This is a synchronous operation that runs every time new data is received. | |
| # This shouldn't be an issue unless data is being received in tiny chunks or the user's machine is a potato. # noqa: E501 | |
| timestamps = get_speech_timestamps(audio.data, vad_opts) | |
| if len(timestamps) == 0: | |
| logger.info(f"No speech detected in the last {config.inactivity_window_seconds} seconds.") | |
| break | |
| elif ( | |
| # last speech end time | |
| config.inactivity_window_seconds - timestamps[-1]["end"] / SAMPLES_PER_SECOND | |
| >= config.max_inactivity_seconds | |
| ): | |
| logger.info(f"Not enough speech in the last {config.inactivity_window_seconds} seconds.") | |
| break | |
| except TimeoutError: | |
| logger.info(f"No data received in {config.max_no_data_seconds} seconds. Closing the connection.") | |
| except WebSocketDisconnect as e: | |
| logger.info(f"Client disconnected: {e}") | |
| audio_stream.close() | |
| async def transcribe_stream( | |
| config: ConfigDependency, | |
| model_manager: ModelManagerDependency, | |
| ws: WebSocket, | |
| model: Annotated[ModelName | None, Query()] = None, | |
| language: Annotated[Language | None, Query()] = None, | |
| response_format: Annotated[ResponseFormat | None, Query()] = None, | |
| temperature: Annotated[float, Query()] = 0.0, | |
| vad_filter: Annotated[bool, Query()] = False, | |
| ) -> None: | |
| if model is None: | |
| model = config.whisper.model | |
| if language is None: | |
| language = config.default_language | |
| if response_format is None: | |
| response_format = config.default_response_format | |
| await ws.accept() | |
| transcribe_opts = { | |
| "language": language, | |
| "temperature": temperature, | |
| "vad_filter": vad_filter, | |
| "condition_on_previous_text": False, | |
| } | |
| with model_manager.load_model(model) as whisper: | |
| asr = FasterWhisperASR(whisper, **transcribe_opts) | |
| audio_stream = AudioStream() | |
| async with asyncio.TaskGroup() as tg: | |
| tg.create_task(audio_receiver(ws, audio_stream)) | |
| async for transcription in audio_transcriber(asr, audio_stream, min_duration=config.min_duration): | |
| logger.debug(f"Sending transcription: {transcription.text}") | |
| if ws.client_state == WebSocketState.DISCONNECTED: | |
| break | |
| if response_format == ResponseFormat.TEXT: | |
| await ws.send_text(transcription.text) | |
| elif response_format == ResponseFormat.JSON: | |
| await ws.send_json(CreateTranscriptionResponseJson.from_transcription(transcription).model_dump()) | |
| elif response_format == ResponseFormat.VERBOSE_JSON: | |
| await ws.send_json( | |
| CreateTranscriptionResponseVerboseJson.from_transcription(transcription).model_dump() | |
| ) | |
| if ws.client_state != WebSocketState.DISCONNECTED: | |
| logger.info("Closing the connection.") | |
| await ws.close() | |