Translator / app.py
feliksius's picture
Update app.py
eef12d5 verified
raw
history blame
14.2 kB
import gradio as gr
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import pipeline
import langdetect
import logging
import os
from typing import Optional
import re
from functools import lru_cache
import asyncio
import threading
import time
# Create necessary directories
os.makedirs("./cache", exist_ok=True)
os.makedirs("./logs", exist_ok=True)
# Set environment variables for Hugging Face cache
os.environ["HF_HOME"] = "./cache"
os.environ["TRANSFORMERS_CACHE"] = "./cache"
# Environment configuration
DEVICE = -1 # Always use CPU for HF Spaces
MAX_TEXT_LENGTH = int(os.getenv("MAX_TEXT_LENGTH", "5000"))
# Configure logging
logging.basicConfig(
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
level=logging.INFO
)
logger = logging.getLogger(__name__)
# Map of supported language models
MODEL_MAP = {
"th": "Helsinki-NLP/opus-mt-th-en",
"ja": "Helsinki-NLP/opus-mt-ja-en",
"zh": "Helsinki-NLP/opus-mt-zh-en",
"vi": "Helsinki-NLP/opus-mt-vi-en",
}
# List of terms to protect from translation
PROTECTED_TERMS = ["2030 Aspirations", "Griffith"]
# Cache for translators
translators = {}
# Pydantic models
class TranslationRequest(BaseModel):
text: str
source_lang_override: Optional[str] = None
class TranslationResponse(BaseModel):
translated_text: str
source_language: Optional[str] = None
# FastAPI app
app = FastAPI(title="Translation Service API")
def get_translator(lang: str):
"""Load or retrieve cached translator for the given language."""
if lang not in translators:
logger.info(f"Loading model for {lang}...")
try:
translators[lang] = pipeline(
"translation",
model=MODEL_MAP[lang],
device=-1
)
logger.info(f"Model for {lang} loaded successfully.")
except Exception as e:
logger.error(f"Failed to load model for {lang}: {str(e)}")
raise
return translators[lang]
@lru_cache(maxsize=100)
def detect_language(text: str) -> str:
"""Cached language detection."""
try:
detected_lang = langdetect.detect(text)
if detected_lang.startswith('zh'):
return 'zh'
return detected_lang if detected_lang in MODEL_MAP else "en"
except Exception as e:
logger.warning(f"Language detection failed: {str(e)}")
return "en"
def protect_terms(text: str, protected_terms: list) -> tuple[str, dict]:
"""Replace protected terms with placeholders using more robust patterns."""
modified_text = text
replacements = {}
for i, term in enumerate(protected_terms):
# Create a unique placeholder
placeholder = f"PROTECTEDTERM{i}PLACEHOLDER"
replacements[placeholder] = term
# Use multiple patterns to catch the term
patterns = [
# Exact match with word boundaries
r'\b' + re.escape(term) + r'\b',
# Case insensitive match
r'(?i)\b' + re.escape(term) + r'\b',
# Match with potential spaces/punctuation
re.escape(term).replace(r'\ ', r'\s+'),
]
for pattern in patterns:
if re.search(pattern, modified_text):
modified_text = re.sub(pattern, placeholder, modified_text)
logger.debug(f"Protected term '{term}' replaced with '{placeholder}'")
break
return modified_text, replacements
def restore_terms(text: str, replacements: dict) -> str:
"""Restore protected terms in the translated text with fuzzy matching."""
restored_text = text
for placeholder, original_term in replacements.items():
# Direct replacement
if placeholder in restored_text:
restored_text = restored_text.replace(placeholder, original_term)
logger.debug(f"Restored '{placeholder}' to '{original_term}'")
else:
# Try to find partial matches or corrupted placeholders
# Sometimes translation models might alter the placeholder slightly
words = restored_text.split()
for i, word in enumerate(words):
# Check if word contains part of our placeholder
if "PROTECTEDTERM" in word and "PLACEHOLDER" in word:
words[i] = original_term
logger.debug(f"Fuzzy restored corrupted placeholder '{word}' to '{original_term}'")
# Also check for common corruptions
elif word.upper().replace(".", "").replace(",", "") == placeholder.upper():
words[i] = original_term
logger.debug(f"Restored corrupted '{word}' to '{original_term}'")
restored_text = " ".join(words)
# Clean up any remaining artifacts (dots, extra spaces)
restored_text = re.sub(r'\s*\.\s*\.\s*\.\s*\.+', '', restored_text) # Remove multiple dots
restored_text = re.sub(r'\s+', ' ', restored_text) # Normalize spaces
restored_text = restored_text.strip()
return restored_text
# FastAPI endpoints
@app.get("/")
async def root():
return {"message": "Translation Service API is running"}
@app.get("/health")
async def health_check():
return {"status": "healthy", "supported_languages": list(MODEL_MAP.keys())}
@app.post("/translate", response_model=TranslationResponse)
async def translate_api(request: TranslationRequest):
"""API endpoint for translation."""
return await translate(request.text, request.source_lang_override)
# Core translation function
async def translate(text: str, source_lang_override: Optional[str] = None):
"""Core translation function used by both API and Gradio."""
if not text or not text.strip():
raise HTTPException(status_code=400, detail="Text input is required.")
if len(text) > MAX_TEXT_LENGTH:
raise HTTPException(
status_code=413,
detail=f"Text too long. Max allowed length: {MAX_TEXT_LENGTH}."
)
try:
# Determine source language
if source_lang_override and source_lang_override in MODEL_MAP:
source_lang = source_lang_override
else:
source_lang = detect_language(text)
# If source language is English, return original text
if source_lang == "en":
return TranslationResponse(
translated_text=text,
source_language=source_lang
)
# Get translator
translator = get_translator(source_lang)
# Protect terms before translation
modified_text, replacements = protect_terms(text, PROTECTED_TERMS)
logger.debug(f"Original text: '{text}'")
logger.debug(f"Modified text: '{modified_text}'")
logger.debug(f"Replacements: {replacements}")
# Perform translation with more conservative settings
result = translator(
modified_text,
max_length=512,
num_beams=2, # Reduced from 4 to be more conservative
do_sample=False,
early_stopping=True,
no_repeat_ngram_size=2
)
translated_text = result[0]["translation_text"]
logger.debug(f"Raw translation: '{translated_text}'")
# Restore protected terms
final_text = restore_terms(translated_text, replacements)
logger.debug(f"Final text after restoration: '{final_text}'")
return TranslationResponse(
translated_text=final_text,
source_language=source_lang
)
except Exception as e:
logger.error(f"Translation error: {str(e)}")
raise HTTPException(status_code=500, detail=f"Translation failed: {str(e)}")
# Gradio interface functions
def translate_gradio(text: str, source_lang: str = "auto"):
"""Gradio wrapper for translation function."""
if not text.strip():
return "Please enter some text to translate.", "N/A"
try:
source_lang_param = source_lang if source_lang != "auto" else None
# Call the async function synchronously for Gradio
import asyncio
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
result = loop.run_until_complete(translate(text, source_lang_param))
return result.translated_text, result.source_language or "Unknown"
except HTTPException as e:
return f"Error: {e.detail}", "Error"
except Exception as e:
return f"Error: {str(e)}", "Error"
# Create Gradio interface
def create_gradio_interface():
with gr.Blocks(
title="Multi-Language Translation Service",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px !important;
}
"""
) as interface:
gr.Markdown("""
# 🌐 Multi-Language Translation Service
Translate text from **Thai**, **Japanese**, **Chinese**, or **Vietnamese** to **English**
✨ Features: Automatic language detection • Protected terms preservation • Fast Helsinki-NLP models
""")
with gr.Row():
with gr.Column(scale=1):
text_input = gr.Textbox(
label="📝 Input Text",
placeholder="Enter text to translate...",
lines=6,
max_lines=10
)
with gr.Row():
lang_dropdown = gr.Dropdown(
choices=[
("🔍 Auto-detect", "auto"),
("🇹🇭 Thai", "th"),
("🇯🇵 Japanese", "ja"),
("🇨🇳 Chinese", "zh"),
("🇻🇳 Vietnamese", "vi")
],
value="auto",
label="Source Language"
)
translate_btn = gr.Button(
"🚀 Translate",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
output_text = gr.Textbox(
label="🎯 Translation Result",
lines=6,
max_lines=10,
interactive=False
)
detected_lang = gr.Textbox(
label="🔍 Detected Language",
interactive=False,
max_lines=1
)
# Examples section
with gr.Row():
gr.Examples(
examples=[
["สวัสดีครับ ยินดีที่ได้รู้จัก การพัฒนา 2030 Aspirations เป็นเป้าหมายสำคัญ", "th"],
["ฉันเลือกทานอาหารที่ดีต่อสุขภาพร่างกายเพื่อเป็นส่วนหนึ่งในการสนับสนุน 2030 Aspirations", "th"],
["こんにちは、はじめまして。Griffith大学での研究が進んでいます。", "ja"],
["你好,很高兴认识你。我们正在为2030 Aspirations制定计划。", "zh"],
["Xin chào, rất vui được gặp bạn. Griffith là trường đại học tuyệt vời.", "vi"],
],
inputs=[text_input, lang_dropdown],
outputs=[output_text, detected_lang],
fn=translate_gradio,
cache_examples=False,
label="📋 Try these examples:"
)
# Event handlers
translate_btn.click(
fn=translate_gradio,
inputs=[text_input, lang_dropdown],
outputs=[output_text, detected_lang]
)
text_input.submit(
fn=translate_gradio,
inputs=[text_input, lang_dropdown],
outputs=[output_text, detected_lang]
)
# Information accordion
with gr.Accordion("ℹ️ About this service", open=False):
gr.Markdown("""
### 🎯 Supported Languages:
- **Thai (th)** → English
- **Japanese (ja)** → English
- **Chinese (zh)** → English
- **Vietnamese (vi)** → English
### 🛡️ Special Features:
- **Protected Terms**: Certain terms like "2030 Aspirations" and "Griffith" are preserved during translation
- **Auto Detection**: Automatically detects the source language if not specified
- **Fast Processing**: Uses optimized Helsinki-NLP translation models
### 🚀 How to use:
1. Paste or type your text in the input box
2. Choose source language or leave as 'Auto-detect'
3. Click 'Translate' or press Enter
4. Get your English translation instantly!
### 🔧 API Access:
This service also provides REST API endpoints:
- `GET /health` - Check service status
- `POST /translate` - Translate text (JSON payload required)
""")
return interface
# Start FastAPI in a separate thread
def start_fastapi():
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860, log_level="info")
# Main execution
if __name__ == "__main__":
# Start FastAPI server in background thread
fastapi_thread = threading.Thread(target=start_fastapi, daemon=True)
fastapi_thread.start()
# Give FastAPI time to start
time.sleep(2)
# Create and launch Gradio interface
demo = create_gradio_interface()
demo.queue(max_size=10)
demo.launch(
server_name="0.0.0.0",
server_port=7861,
share=False,
show_error=True
)