Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,13 +5,12 @@ from transformers import pipeline
|
|
5 |
import langdetect
|
6 |
import logging
|
7 |
import os
|
8 |
-
from typing import Optional
|
9 |
import re
|
10 |
from functools import lru_cache
|
11 |
import asyncio
|
12 |
-
import threading
|
13 |
-
import time
|
14 |
|
|
|
15 |
# Create necessary directories
|
16 |
os.makedirs("./cache", exist_ok=True)
|
17 |
os.makedirs("./logs", exist_ok=True)
|
@@ -21,7 +20,7 @@ os.environ["HF_HOME"] = "./cache"
|
|
21 |
os.environ["TRANSFORMERS_CACHE"] = "./cache"
|
22 |
|
23 |
# Environment configuration
|
24 |
-
DEVICE = -1 #
|
25 |
MAX_TEXT_LENGTH = int(os.getenv("MAX_TEXT_LENGTH", "5000"))
|
26 |
|
27 |
# Configure logging
|
@@ -31,21 +30,21 @@ logging.basicConfig(
|
|
31 |
)
|
32 |
logger = logging.getLogger(__name__)
|
33 |
|
34 |
-
# Map
|
35 |
MODEL_MAP = {
|
36 |
"th": "Helsinki-NLP/opus-mt-th-en",
|
37 |
-
"ja": "Helsinki-NLP/opus-mt-ja-en",
|
38 |
"zh": "Helsinki-NLP/opus-mt-zh-en",
|
39 |
"vi": "Helsinki-NLP/opus-mt-vi-en",
|
40 |
}
|
41 |
|
42 |
-
#
|
43 |
PROTECTED_TERMS = ["2030 Aspirations", "Griffith"]
|
44 |
|
45 |
-
# Cache
|
46 |
-
translators = {}
|
47 |
|
48 |
-
# Pydantic
|
49 |
class TranslationRequest(BaseModel):
|
50 |
text: str
|
51 |
source_lang_override: Optional[str] = None
|
@@ -54,278 +53,197 @@ class TranslationResponse(BaseModel):
|
|
54 |
translated_text: str
|
55 |
source_language: Optional[str] = None
|
56 |
|
57 |
-
# FastAPI
|
58 |
app = FastAPI(title="Translation Service API")
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
64 |
try:
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
device=-1
|
69 |
-
)
|
70 |
-
logger.info(f"Model for {lang} loaded successfully.")
|
71 |
except Exception as e:
|
72 |
-
logger.error(f"
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
def detect_language(text: str) -> str:
|
78 |
-
"""
|
79 |
try:
|
80 |
-
|
|
|
|
|
81 |
if detected_lang.startswith('zh'):
|
82 |
return 'zh'
|
83 |
return detected_lang if detected_lang in MODEL_MAP else "en"
|
84 |
except Exception as e:
|
85 |
-
logger.warning(f"
|
86 |
return "en"
|
87 |
|
88 |
def protect_terms(text: str, protected_terms: list) -> tuple[str, dict]:
|
89 |
-
"""
|
90 |
-
modified_text = text
|
91 |
replacements = {}
|
92 |
for i, term in enumerate(protected_terms):
|
93 |
placeholder = f"__PROTECTED_{i}__"
|
94 |
-
|
95 |
-
modified_text = re.sub(r'\b' + re.escape(term) + r'\b', placeholder,
|
96 |
-
|
|
|
|
|
|
|
|
|
97 |
|
98 |
def restore_terms(text: str, replacements: dict) -> str:
|
99 |
-
"""
|
100 |
-
restored_text = text
|
101 |
for placeholder, term in replacements.items():
|
102 |
-
|
103 |
-
return
|
104 |
-
|
105 |
-
# FastAPI endpoints
|
106 |
-
@app.get("/")
|
107 |
-
async def root():
|
108 |
-
return {"message": "Translation Service API is running"}
|
109 |
-
|
110 |
-
@app.get("/health")
|
111 |
-
async def health_check():
|
112 |
-
return {"status": "healthy", "supported_languages": list(MODEL_MAP.keys())}
|
113 |
|
114 |
-
|
115 |
-
async def
|
116 |
-
"""
|
117 |
-
return await translate(request.text, request.source_lang_override)
|
118 |
-
|
119 |
-
# Core translation function
|
120 |
-
async def translate(text: str, source_lang_override: Optional[str] = None):
|
121 |
-
"""Core translation function used by both API and Gradio."""
|
122 |
if not text or not text.strip():
|
123 |
-
raise HTTPException(status_code=400, detail="
|
124 |
|
125 |
if len(text) > MAX_TEXT_LENGTH:
|
126 |
raise HTTPException(
|
127 |
status_code=413,
|
128 |
-
detail=f"
|
129 |
)
|
130 |
|
131 |
try:
|
132 |
-
#
|
133 |
if source_lang_override and source_lang_override in MODEL_MAP:
|
134 |
source_lang = source_lang_override
|
135 |
else:
|
136 |
source_lang = detect_language(text)
|
137 |
|
138 |
-
#
|
139 |
if source_lang == "en":
|
140 |
-
return TranslationResponse(
|
141 |
-
translated_text=text,
|
142 |
-
source_language=source_lang
|
143 |
-
)
|
144 |
|
145 |
-
#
|
146 |
translator = get_translator(source_lang)
|
147 |
|
148 |
-
#
|
149 |
modified_text, replacements = protect_terms(text, PROTECTED_TERMS)
|
150 |
|
151 |
-
#
|
152 |
-
|
|
|
|
|
|
|
|
|
153 |
translated_text = result[0]["translation_text"]
|
154 |
|
155 |
-
#
|
156 |
final_text = restore_terms(translated_text, replacements)
|
157 |
|
158 |
-
return TranslationResponse(
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
except Exception as e:
|
164 |
-
logger.error(f"
|
165 |
-
raise HTTPException(status_code=500, detail=f"
|
166 |
-
|
167 |
-
|
168 |
-
def
|
169 |
-
"""
|
170 |
-
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
try:
|
174 |
source_lang_param = source_lang if source_lang != "auto" else None
|
175 |
-
|
176 |
-
# Call the async function synchronously for Gradio
|
177 |
-
import asyncio
|
178 |
-
loop = asyncio.new_event_loop()
|
179 |
-
asyncio.set_event_loop(loop)
|
180 |
-
|
181 |
-
result = loop.run_until_complete(translate(text, source_lang_param))
|
182 |
-
|
183 |
return result.translated_text, result.source_language or "Unknown"
|
184 |
-
|
185 |
except HTTPException as e:
|
186 |
return f"Error: {e.detail}", "Error"
|
187 |
except Exception as e:
|
188 |
return f"Error: {str(e)}", "Error"
|
189 |
|
190 |
-
#
|
|
|
191 |
def create_gradio_interface():
|
192 |
with gr.Blocks(
|
193 |
title="Multi-Language Translation Service",
|
194 |
theme=gr.themes.Soft(),
|
195 |
-
css=""
|
196 |
-
.gradio-container {
|
197 |
-
max-width: 1200px !important;
|
198 |
-
}
|
199 |
-
"""
|
200 |
) as interface:
|
201 |
-
|
202 |
gr.Markdown("""
|
203 |
# 🌐 Multi-Language Translation Service
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
✨ Features: Automatic language detection • Protected terms preservation • Fast Helsinki-NLP models
|
208 |
""")
|
209 |
|
210 |
with gr.Row():
|
211 |
with gr.Column(scale=1):
|
212 |
-
text_input = gr.Textbox(
|
213 |
-
label="📝 Input Text",
|
214 |
-
placeholder="Enter text to translate...",
|
215 |
-
lines=6,
|
216 |
-
max_lines=10
|
217 |
-
)
|
218 |
-
|
219 |
with gr.Row():
|
220 |
lang_dropdown = gr.Dropdown(
|
221 |
choices=[
|
222 |
-
("🔍 Auto-detect", "auto"),
|
223 |
-
("
|
224 |
-
("🇯🇵 Japanese", "ja"),
|
225 |
-
("🇨🇳 Chinese", "zh"),
|
226 |
-
("🇻🇳 Vietnamese", "vi")
|
227 |
],
|
228 |
-
value="auto",
|
229 |
-
label="Source Language"
|
230 |
)
|
231 |
-
|
232 |
-
|
233 |
-
"🚀 Translate",
|
234 |
-
variant="primary",
|
235 |
-
size="lg"
|
236 |
-
)
|
237 |
-
|
238 |
with gr.Column(scale=1):
|
239 |
-
output_text = gr.Textbox(
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
max_lines=1
|
250 |
-
)
|
251 |
-
|
252 |
-
# Examples section
|
253 |
-
with gr.Row():
|
254 |
-
gr.Examples(
|
255 |
-
examples=[
|
256 |
-
["สวัสดีครับ ยินดีที่ได้รู้จัก การพัฒนา 2030 Aspirations เป็นเป้าหมายสำคัญ", "th"],
|
257 |
-
["こんにちは、はじめまして。Griffith大学での研究が進んでいます。", "ja"],
|
258 |
-
["你好,很高兴认识你。我们正在为2030 Aspirations制定计划。", "zh"],
|
259 |
-
["Xin chào, rất vui được gặp bạn. Griffith là trường đại học tuyệt vời.", "vi"],
|
260 |
-
],
|
261 |
-
inputs=[text_input, lang_dropdown],
|
262 |
-
outputs=[output_text, detected_lang],
|
263 |
-
fn=translate_gradio,
|
264 |
-
cache_examples=False,
|
265 |
-
label="📋 Try these examples:"
|
266 |
-
)
|
267 |
-
|
268 |
-
# Event handlers
|
269 |
-
translate_btn.click(
|
270 |
-
fn=translate_gradio,
|
271 |
inputs=[text_input, lang_dropdown],
|
272 |
-
outputs=[output_text, detected_lang]
|
|
|
|
|
273 |
)
|
274 |
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
outputs=[output_text, detected_lang]
|
279 |
-
)
|
280 |
|
281 |
-
# Information accordion
|
282 |
-
with gr.Accordion("ℹ️ About this service", open=False):
|
283 |
-
gr.Markdown("""
|
284 |
-
### 🎯 Supported Languages:
|
285 |
-
- **Thai (th)** → English
|
286 |
-
- **Japanese (ja)** → English
|
287 |
-
- **Chinese (zh)** → English
|
288 |
-
- **Vietnamese (vi)** → English
|
289 |
-
|
290 |
-
### 🛡️ Special Features:
|
291 |
-
- **Protected Terms**: Certain terms like "2030 Aspirations" and "Griffith" are preserved during translation
|
292 |
-
- **Auto Detection**: Automatically detects the source language if not specified
|
293 |
-
- **Fast Processing**: Uses optimized Helsinki-NLP translation models
|
294 |
-
|
295 |
-
### 🚀 How to use:
|
296 |
-
1. Paste or type your text in the input box
|
297 |
-
2. Choose source language or leave as 'Auto-detect'
|
298 |
-
3. Click 'Translate' or press Enter
|
299 |
-
4. Get your English translation instantly!
|
300 |
-
|
301 |
-
### 🔧 API Access:
|
302 |
-
This service also provides REST API endpoints:
|
303 |
-
- `GET /health` - Check service status
|
304 |
-
- `POST /translate` - Translate text (JSON payload required)
|
305 |
-
""")
|
306 |
-
|
307 |
return interface
|
308 |
|
309 |
-
#
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
# Give FastAPI time to start
|
321 |
-
time.sleep(2)
|
322 |
-
|
323 |
-
# Create and launch Gradio interface
|
324 |
-
demo = create_gradio_interface()
|
325 |
-
demo.queue(max_size=10)
|
326 |
-
demo.launch(
|
327 |
-
server_name="0.0.0.0",
|
328 |
-
server_port=7861,
|
329 |
-
share=False,
|
330 |
-
show_error=True
|
331 |
-
)
|
|
|
5 |
import langdetect
|
6 |
import logging
|
7 |
import os
|
8 |
+
from typing import Optional, Dict
|
9 |
import re
|
10 |
from functools import lru_cache
|
11 |
import asyncio
|
|
|
|
|
12 |
|
13 |
+
# --- 1. Konfigurasi Awal (Tetap Sama) ---
|
14 |
# Create necessary directories
|
15 |
os.makedirs("./cache", exist_ok=True)
|
16 |
os.makedirs("./logs", exist_ok=True)
|
|
|
20 |
os.environ["TRANSFORMERS_CACHE"] = "./cache"
|
21 |
|
22 |
# Environment configuration
|
23 |
+
DEVICE = -1 # Selalu CPU untuk efisiensi di banyak environment
|
24 |
MAX_TEXT_LENGTH = int(os.getenv("MAX_TEXT_LENGTH", "5000"))
|
25 |
|
26 |
# Configure logging
|
|
|
30 |
)
|
31 |
logger = logging.getLogger(__name__)
|
32 |
|
33 |
+
# Map model yang didukung
|
34 |
MODEL_MAP = {
|
35 |
"th": "Helsinki-NLP/opus-mt-th-en",
|
36 |
+
"ja": "Helsinki-NLP/opus-mt-ja-en",
|
37 |
"zh": "Helsinki-NLP/opus-mt-zh-en",
|
38 |
"vi": "Helsinki-NLP/opus-mt-vi-en",
|
39 |
}
|
40 |
|
41 |
+
# Istilah yang dilindungi dari translasi
|
42 |
PROTECTED_TERMS = ["2030 Aspirations", "Griffith"]
|
43 |
|
44 |
+
# Cache untuk translator (pipeline)
|
45 |
+
translators: Dict[str, pipeline] = {}
|
46 |
|
47 |
+
# --- Pydantic Models (Tetap Sama) ---
|
48 |
class TranslationRequest(BaseModel):
|
49 |
text: str
|
50 |
source_lang_override: Optional[str] = None
|
|
|
53 |
translated_text: str
|
54 |
source_language: Optional[str] = None
|
55 |
|
56 |
+
# --- 2. Inisialisasi Aplikasi FastAPI ---
|
57 |
app = FastAPI(title="Translation Service API")
|
58 |
|
59 |
+
# --- 3. OPTIMASI: Prapemuatan Model saat Startup ---
|
60 |
+
@app.on_event("startup")
|
61 |
+
async def startup_event():
|
62 |
+
"""Memuat semua model translasi saat aplikasi dimulai."""
|
63 |
+
logger.info("Memulai prapemuatan model translasi...")
|
64 |
+
for lang, model_name in MODEL_MAP.items():
|
65 |
try:
|
66 |
+
logger.info(f"Memuat model untuk bahasa: {lang} ({model_name})")
|
67 |
+
translators[lang] = pipeline("translation", model=model_name, device=DEVICE)
|
68 |
+
logger.info(f"Model untuk {lang} berhasil dimuat.")
|
|
|
|
|
|
|
69 |
except Exception as e:
|
70 |
+
logger.error(f"Gagal memuat model untuk {lang}: {str(e)}")
|
71 |
+
logger.info("Semua model telah dimuat.")
|
72 |
+
|
73 |
+
def get_translator(lang: str) -> pipeline:
|
74 |
+
"""Mengambil translator yang sudah dimuat dari cache."""
|
75 |
+
translator = translators.get(lang)
|
76 |
+
if not translator:
|
77 |
+
logger.error(f"Translator untuk bahasa '{lang}' tidak ditemukan. Mungkin gagal dimuat saat startup.")
|
78 |
+
raise HTTPException(status_code=500, detail=f"Model terjemahan untuk '{lang}' tidak tersedia.")
|
79 |
+
return translator
|
80 |
+
|
81 |
+
# --- Fungsi Utility (Hampir Sama, Sedikit Perbaikan) ---
|
82 |
+
@lru_cache(maxsize=128) # Cache lebih besar jika perlu
|
83 |
def detect_language(text: str) -> str:
|
84 |
+
"""Deteksi bahasa dengan cache."""
|
85 |
try:
|
86 |
+
# Potong teks untuk deteksi yang lebih cepat jika teks sangat panjang
|
87 |
+
preview_text = text[:500]
|
88 |
+
detected_lang = langdetect.detect(preview_text)
|
89 |
if detected_lang.startswith('zh'):
|
90 |
return 'zh'
|
91 |
return detected_lang if detected_lang in MODEL_MAP else "en"
|
92 |
except Exception as e:
|
93 |
+
logger.warning(f"Deteksi bahasa gagal: {str(e)}. Mengasumsikan 'en'.")
|
94 |
return "en"
|
95 |
|
96 |
def protect_terms(text: str, protected_terms: list) -> tuple[str, dict]:
|
97 |
+
"""Mengganti istilah yang dilindungi dengan placeholder."""
|
|
|
98 |
replacements = {}
|
99 |
for i, term in enumerate(protected_terms):
|
100 |
placeholder = f"__PROTECTED_{i}__"
|
101 |
+
# Gunakan word boundary (\b) untuk memastikan hanya kata utuh yang diganti
|
102 |
+
modified_text = re.sub(r'\b' + re.escape(term) + r'\b', placeholder, text, flags=re.IGNORECASE)
|
103 |
+
# Hanya tambahkan ke replacement jika ada perubahan
|
104 |
+
if modified_text != text:
|
105 |
+
replacements[placeholder] = term
|
106 |
+
text = modified_text
|
107 |
+
return text, replacements
|
108 |
|
109 |
def restore_terms(text: str, replacements: dict) -> str:
|
110 |
+
"""Mengembalikan istilah yang dilindungi."""
|
|
|
111 |
for placeholder, term in replacements.items():
|
112 |
+
text = text.replace(placeholder, term)
|
113 |
+
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
+
# --- 4. OPTIMASI: Fungsi Inti dan Endpoint API menjadi Full Asynchronous ---
|
116 |
+
async def perform_translation(text: str, source_lang_override: Optional[str] = None) -> TranslationResponse:
|
117 |
+
"""Fungsi inti translasi yang sepenuhnya async."""
|
|
|
|
|
|
|
|
|
|
|
118 |
if not text or not text.strip():
|
119 |
+
raise HTTPException(status_code=400, detail="Teks input tidak boleh kosong.")
|
120 |
|
121 |
if len(text) > MAX_TEXT_LENGTH:
|
122 |
raise HTTPException(
|
123 |
status_code=413,
|
124 |
+
detail=f"Teks terlalu panjang. Panjang maksimal yang diizinkan: {MAX_TEXT_LENGTH}."
|
125 |
)
|
126 |
|
127 |
try:
|
128 |
+
# Tentukan bahasa sumber
|
129 |
if source_lang_override and source_lang_override in MODEL_MAP:
|
130 |
source_lang = source_lang_override
|
131 |
else:
|
132 |
source_lang = detect_language(text)
|
133 |
|
134 |
+
# Jika bahasa sumber adalah Inggris, kembalikan teks asli
|
135 |
if source_lang == "en":
|
136 |
+
return TranslationResponse(translated_text=text, source_language=source_lang)
|
|
|
|
|
|
|
137 |
|
138 |
+
# Ambil translator
|
139 |
translator = get_translator(source_lang)
|
140 |
|
141 |
+
# Lindungi istilah sebelum translasi
|
142 |
modified_text, replacements = protect_terms(text, PROTECTED_TERMS)
|
143 |
|
144 |
+
# --- OPTIMASI KUNCI: Jalankan model di thread terpisah ---
|
145 |
+
# Ini mencegah pipeline yang berat memblokir event loop utama
|
146 |
+
def _translate_task():
|
147 |
+
return translator(modified_text, max_length=512, num_beams=4)
|
148 |
+
|
149 |
+
result = await asyncio.to_thread(_translate_task)
|
150 |
translated_text = result[0]["translation_text"]
|
151 |
|
152 |
+
# Kembalikan istilah yang dilindungi
|
153 |
final_text = restore_terms(translated_text, replacements)
|
154 |
|
155 |
+
return TranslationResponse(translated_text=final_text, source_language=source_lang)
|
156 |
+
|
157 |
+
except HTTPException as e:
|
158 |
+
raise e # Re-raise HTTPException agar status code-nya benar
|
|
|
159 |
except Exception as e:
|
160 |
+
logger.error(f"Terjadi kesalahan saat translasi: {str(e)}")
|
161 |
+
raise HTTPException(status_code=500, detail=f"Proses translasi gagal: {str(e)}")
|
162 |
+
|
163 |
+
@app.post("/translate", response_model=TranslationResponse)
|
164 |
+
async def translate_api(request: TranslationRequest):
|
165 |
+
"""Endpoint API untuk translasi."""
|
166 |
+
return await perform_translation(request.text, request.source_lang_override)
|
167 |
+
|
168 |
+
@app.get("/health")
|
169 |
+
async def health_check():
|
170 |
+
return {"status": "healthy", "loaded_models": list(translators.keys())}
|
171 |
+
|
172 |
+
|
173 |
+
# --- 5. OPTIMASI: Handler Gradio menjadi Asynchronous ---
|
174 |
+
async def translate_gradio(text: str, source_lang: str = "auto"):
|
175 |
+
"""Wrapper Gradio yang sekarang async dan lebih efisien."""
|
176 |
+
if not text or not text.strip():
|
177 |
+
return "Masukkan teks untuk diterjemahkan.", "N/A"
|
178 |
+
|
179 |
try:
|
180 |
source_lang_param = source_lang if source_lang != "auto" else None
|
181 |
+
result = await perform_translation(text, source_lang_param)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
return result.translated_text, result.source_language or "Unknown"
|
183 |
+
|
184 |
except HTTPException as e:
|
185 |
return f"Error: {e.detail}", "Error"
|
186 |
except Exception as e:
|
187 |
return f"Error: {str(e)}", "Error"
|
188 |
|
189 |
+
# --- 6. OPTIMASI: Mount Gradio ke FastAPI ---
|
190 |
+
# Fungsi untuk membuat UI Gradio tetap sama
|
191 |
def create_gradio_interface():
|
192 |
with gr.Blocks(
|
193 |
title="Multi-Language Translation Service",
|
194 |
theme=gr.themes.Soft(),
|
195 |
+
css=".gradio-container { max-width: 1200px !important; }"
|
|
|
|
|
|
|
|
|
196 |
) as interface:
|
|
|
197 |
gr.Markdown("""
|
198 |
# 🌐 Multi-Language Translation Service
|
199 |
+
Terjemahkan teks dari **Thai**, **Jepang**, **Mandarin**, atau **Vietnam** ke **Inggris**.
|
200 |
+
✨ Fitur: Deteksi bahasa otomatis • Perlindungan istilah • Model Helsinki-NLP yang cepat.
|
|
|
|
|
201 |
""")
|
202 |
|
203 |
with gr.Row():
|
204 |
with gr.Column(scale=1):
|
205 |
+
text_input = gr.Textbox(label="📝 Input Text", placeholder="Enter text to translate...", lines=6, max_lines=10)
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
with gr.Row():
|
207 |
lang_dropdown = gr.Dropdown(
|
208 |
choices=[
|
209 |
+
("🔍 Auto-detect", "auto"), ("🇹🇭 Thai", "th"), ("🇯🇵 Japanese", "ja"),
|
210 |
+
("🇨🇳 Chinese", "zh"), ("🇻🇳 Vietnamese", "vi")
|
|
|
|
|
|
|
211 |
],
|
212 |
+
value="auto", label="Source Language"
|
|
|
213 |
)
|
214 |
+
translate_btn = gr.Button("🚀 Translate", variant="primary", size="lg")
|
215 |
+
|
|
|
|
|
|
|
|
|
|
|
216 |
with gr.Column(scale=1):
|
217 |
+
output_text = gr.Textbox(label="🎯 Translation Result", lines=6, max_lines=10, interactive=False)
|
218 |
+
detected_lang = gr.Textbox(label="🔍 Detected Language", interactive=False, max_lines=1)
|
219 |
+
|
220 |
+
gr.Examples(
|
221 |
+
examples=[
|
222 |
+
["สวัสดีครับ ยินดีที่ได้รู้จัก การพัฒนา 2030 Aspirations เป็นเป้าหมายสำคัญ", "th"],
|
223 |
+
["こんにちは��はじめまして。Griffith大学での研究が進んでいます。", "ja"],
|
224 |
+
["你好,很高兴认识你。我们正在为2030 Aspirations制定计划。", "zh"],
|
225 |
+
["Xin chào, rất vui được gặp bạn. Griffith là trường đại học tuyệt vời.", "vi"],
|
226 |
+
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
inputs=[text_input, lang_dropdown],
|
228 |
+
outputs=[output_text, detected_lang],
|
229 |
+
fn=translate_gradio, # Sekarang memanggil fungsi async secara langsung
|
230 |
+
cache_examples=False
|
231 |
)
|
232 |
|
233 |
+
# Event handlers sekarang bisa langsung memanggil fungsi async
|
234 |
+
translate_btn.click(fn=translate_gradio, inputs=[text_input, lang_dropdown], outputs=[output_text, detected_lang])
|
235 |
+
text_input.submit(fn=translate_gradio, inputs=[text_input, lang_dropdown], outputs=[output_text, detected_lang])
|
|
|
|
|
236 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
return interface
|
238 |
|
239 |
+
# Buat UI Gradio
|
240 |
+
gradio_app = create_gradio_interface()
|
241 |
+
|
242 |
+
# Mount Gradio app ke FastAPI di path "/"
|
243 |
+
# Ini adalah cara yang benar untuk mengintegrasikan keduanya
|
244 |
+
app = gr.mount_gradio_app(app, gradio_app, path="/")
|
245 |
+
|
246 |
+
|
247 |
+
# Untuk menjalankan:
|
248 |
+
# Simpan file ini sebagai app.py dan jalankan dengan uvicorn
|
249 |
+
# > uvicorn app:app --reload --port 7860
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|