Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,41 @@
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
-
from transformers import
|
3 |
import torch
|
4 |
from langdetect import detect, LangDetectException
|
5 |
from pydantic import BaseModel
|
6 |
|
7 |
# Inisialisasi FastAPI
|
8 |
-
app = FastAPI(title="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
# Load model dan tokenizer
|
11 |
-
model_name = "facebook/m2m100_418M"
|
12 |
try:
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
model.eval()
|
18 |
except Exception as e:
|
19 |
raise Exception(f"Gagal memuat model: {str(e)}")
|
20 |
|
21 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def translate_text(text: str, source_lang: str = None):
|
23 |
try:
|
24 |
# Validasi input teks
|
@@ -29,24 +46,26 @@ def translate_text(text: str, source_lang: str = None):
|
|
29 |
if not source_lang:
|
30 |
try:
|
31 |
detected_lang = detect(text)
|
32 |
-
if detected_lang
|
33 |
-
return {"
|
|
|
|
|
34 |
source_lang = detected_lang
|
35 |
except LangDetectException:
|
36 |
-
return {"error": "Gagal mendeteksi bahasa. Harap masukkan kode bahasa sumber"}, None
|
37 |
else:
|
38 |
-
if source_lang
|
39 |
-
return {"
|
|
|
|
|
40 |
|
41 |
-
#
|
42 |
-
tokenizer
|
|
|
43 |
|
44 |
# Encode dan terjemahkan
|
45 |
encoded = tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device)
|
46 |
-
generated_tokens = model.generate(
|
47 |
-
**encoded,
|
48 |
-
forced_bos_token_id=tokenizer.get_lang_id("en")
|
49 |
-
)
|
50 |
translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
51 |
|
52 |
return {"translated_text": translated_text}, source_lang
|
@@ -54,19 +73,17 @@ def translate_text(text: str, source_lang: str = None):
|
|
54 |
except Exception as e:
|
55 |
return {"error": f"Terjemahan gagal: {str(e)}"}, None
|
56 |
|
57 |
-
# Model untuk respons JSON
|
58 |
-
class TranslationResponse(BaseModel):
|
59 |
-
translated_text: str | None = None
|
60 |
-
source_lang: str | None = None
|
61 |
-
error: str | None = None
|
62 |
-
|
63 |
# Endpoint API
|
64 |
@app.get("/translate", response_model=TranslationResponse)
|
65 |
async def translate(text: str, lang: str | None = None):
|
66 |
result, detected_lang = translate_text(text, lang)
|
67 |
if "error" in result:
|
68 |
raise HTTPException(status_code=400, detail=result["error"])
|
69 |
-
return {
|
|
|
|
|
|
|
|
|
70 |
|
71 |
# Jalankan aplikasi (untuk pengembangan lokal)
|
72 |
if __name__ == "__main__":
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
+
from transformers import MarianMTModel, MarianTokenizer
|
3 |
import torch
|
4 |
from langdetect import detect, LangDetectException
|
5 |
from pydantic import BaseModel
|
6 |
|
7 |
# Inisialisasi FastAPI
|
8 |
+
app = FastAPI(title="Helsinki-NLP Translation API")
|
9 |
+
|
10 |
+
# Daftar model untuk setiap bahasa
|
11 |
+
MODEL_MAPPING = {
|
12 |
+
"th": "Helsinki-NLP/opus-mt-th-en",
|
13 |
+
"ja": "Helsinki-NLP/opus-mt-ja-en",
|
14 |
+
"zh": "Helsinki-NLP/opus-mt-zh-en",
|
15 |
+
"vi": "Helsinki-NLP/opus-mt-vi-en"
|
16 |
+
}
|
17 |
+
|
18 |
+
# Muat model dan tokenizer untuk setiap bahasa
|
19 |
+
models = {}
|
20 |
+
tokenizers = {}
|
21 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
|
|
|
|
|
23 |
try:
|
24 |
+
for lang, model_name in MODEL_MAPPING.items():
|
25 |
+
tokenizers[lang] = MarianTokenizer.from_pretrained(model_name)
|
26 |
+
models[lang] = MarianMTModel.from_pretrained(model_name).to(device)
|
27 |
+
models[lang].eval()
|
|
|
28 |
except Exception as e:
|
29 |
raise Exception(f"Gagal memuat model: {str(e)}")
|
30 |
|
31 |
+
# Model untuk respons JSON
|
32 |
+
class TranslationResponse(BaseModel):
|
33 |
+
translated_text: str | None = None
|
34 |
+
source_lang: str | None = None
|
35 |
+
message: str | None = None
|
36 |
+
error: str | None = None
|
37 |
+
|
38 |
+
# Fungsi terjemahan
|
39 |
def translate_text(text: str, source_lang: str = None):
|
40 |
try:
|
41 |
# Validasi input teks
|
|
|
46 |
if not source_lang:
|
47 |
try:
|
48 |
detected_lang = detect(text)
|
49 |
+
if detected_lang == "en":
|
50 |
+
return {"translated_text": text, "message": "Teks sudah dalam bahasa Inggris"}, detected_lang
|
51 |
+
if detected_lang not in MODEL_MAPPING:
|
52 |
+
return {"error": f"Bahasa terdeteksi '{detected_lang}' tidak didukung. Hanya mendukung: {list(MODEL_MAPPING.keys())}"}, detected_lang
|
53 |
source_lang = detected_lang
|
54 |
except LangDetectException:
|
55 |
+
return {"error": "Gagal mendeteksi bahasa. Harap masukkan kode bahasa sumber (th, ja, zh, vi)"}, None
|
56 |
else:
|
57 |
+
if source_lang == "en":
|
58 |
+
return {"translated_text": text, "message": "Teks sudah dalam bahasa Inggris"}, source_lang
|
59 |
+
if source_lang not in MODEL_MAPPING:
|
60 |
+
return {"error": f"Kode bahasa '{source_lang}' tidak didukung. Hanya mendukung: {list(MODEL_MAPPING.keys())}"}, None
|
61 |
|
62 |
+
# Ambil model dan tokenizer berdasarkan bahasa
|
63 |
+
tokenizer = tokenizers[source_lang]
|
64 |
+
model = models[source_lang]
|
65 |
|
66 |
# Encode dan terjemahkan
|
67 |
encoded = tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device)
|
68 |
+
generated_tokens = model.generate(**encoded)
|
|
|
|
|
|
|
69 |
translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
70 |
|
71 |
return {"translated_text": translated_text}, source_lang
|
|
|
73 |
except Exception as e:
|
74 |
return {"error": f"Terjemahan gagal: {str(e)}"}, None
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
# Endpoint API
|
77 |
@app.get("/translate", response_model=TranslationResponse)
|
78 |
async def translate(text: str, lang: str | None = None):
|
79 |
result, detected_lang = translate_text(text, lang)
|
80 |
if "error" in result:
|
81 |
raise HTTPException(status_code=400, detail=result["error"])
|
82 |
+
return {
|
83 |
+
"translated_text": result.get("translated_text"),
|
84 |
+
"source_lang": detected_lang,
|
85 |
+
"message": result.get("message")
|
86 |
+
}
|
87 |
|
88 |
# Jalankan aplikasi (untuk pengembangan lokal)
|
89 |
if __name__ == "__main__":
|