fendiprime nielsr HF Staff commited on
Commit
a8d7adc
·
0 Parent(s):

Duplicate from nielsr/dit-document-layout-analysis

Browse files

Co-authored-by: Niels Rogge <[email protected]>

Files changed (8) hide show
  1. .gitattributes +27 -0
  2. Base-RCNN-FPN.yml +69 -0
  3. README.md +13 -0
  4. app.py +70 -0
  5. cascade_dit_base.yml +20 -0
  6. packages.txt +1 -0
  7. publaynet_example.jpeg +0 -0
  8. requirements.txt +10 -0
.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
Base-RCNN-FPN.yml ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MODEL:
2
+ MASK_ON: True
3
+ META_ARCHITECTURE: "GeneralizedRCNN"
4
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
5
+ PIXEL_STD: [58.395, 57.120, 57.375]
6
+ BACKBONE:
7
+ NAME: "build_vit_fpn_backbone"
8
+ VIT:
9
+ OUT_FEATURES: ["layer3", "layer5", "layer7", "layer11"]
10
+ DROP_PATH: 0.1
11
+ IMG_SIZE: [224,224]
12
+ POS_TYPE: "abs"
13
+ FPN:
14
+ IN_FEATURES: ["layer3", "layer5", "layer7", "layer11"]
15
+ ANCHOR_GENERATOR:
16
+ SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
17
+ ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
18
+ RPN:
19
+ IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
20
+ PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
21
+ PRE_NMS_TOPK_TEST: 1000 # Per FPN level
22
+ # Detectron1 uses 2000 proposals per-batch,
23
+ # (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
24
+ # which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
25
+ POST_NMS_TOPK_TRAIN: 1000
26
+ POST_NMS_TOPK_TEST: 1000
27
+ ROI_HEADS:
28
+ NAME: "StandardROIHeads"
29
+ IN_FEATURES: ["p2", "p3", "p4", "p5"]
30
+ NUM_CLASSES: 5
31
+ ROI_BOX_HEAD:
32
+ NAME: "FastRCNNConvFCHead"
33
+ NUM_FC: 2
34
+ POOLER_RESOLUTION: 7
35
+ ROI_MASK_HEAD:
36
+ NAME: "MaskRCNNConvUpsampleHead"
37
+ NUM_CONV: 4
38
+ POOLER_RESOLUTION: 14
39
+ DATASETS:
40
+ TRAIN: ("publaynet_train",)
41
+ TEST: ("publaynet_val",)
42
+ SOLVER:
43
+ LR_SCHEDULER_NAME: "WarmupCosineLR"
44
+ AMP:
45
+ ENABLED: True
46
+ OPTIMIZER: "ADAMW"
47
+ BACKBONE_MULTIPLIER: 1.0
48
+ CLIP_GRADIENTS:
49
+ ENABLED: True
50
+ CLIP_TYPE: "full_model"
51
+ CLIP_VALUE: 1.0
52
+ NORM_TYPE: 2.0
53
+ WARMUP_FACTOR: 0.01
54
+ BASE_LR: 0.0004
55
+ WEIGHT_DECAY: 0.05
56
+ IMS_PER_BATCH: 32
57
+ INPUT:
58
+ CROP:
59
+ ENABLED: True
60
+ TYPE: "absolute_range"
61
+ SIZE: (384, 600)
62
+ MIN_SIZE_TRAIN: (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800)
63
+ FORMAT: "RGB"
64
+ DATALOADER:
65
+ FILTER_EMPTY_ANNOTATIONS: False
66
+ VERSION: 2
67
+ AUG:
68
+ DETR: True
69
+ SEED: 42
README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Dit Document Layout Analysis
3
+ emoji: 👀
4
+ colorFrom: purple
5
+ colorTo: red
6
+ sdk: gradio
7
+ sdk_version: 2.8.9
8
+ app_file: app.py
9
+ pinned: false
10
+ duplicated_from: nielsr/dit-document-layout-analysis
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
app.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ os.system('pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html')
3
+ os.system("git clone https://github.com/microsoft/unilm.git")
4
+
5
+ import sys
6
+ sys.path.append("unilm")
7
+
8
+ import cv2
9
+
10
+ from unilm.dit.object_detection.ditod import add_vit_config
11
+
12
+ import torch
13
+
14
+ from detectron2.config import CfgNode as CN
15
+ from detectron2.config import get_cfg
16
+ from detectron2.utils.visualizer import ColorMode, Visualizer
17
+ from detectron2.data import MetadataCatalog
18
+ from detectron2.engine import DefaultPredictor
19
+
20
+ import gradio as gr
21
+
22
+
23
+ # Step 1: instantiate config
24
+ cfg = get_cfg()
25
+ add_vit_config(cfg)
26
+ cfg.merge_from_file("cascade_dit_base.yml")
27
+
28
+ # Step 2: add model weights URL to config
29
+ cfg.MODEL.WEIGHTS = "https://layoutlm.blob.core.windows.net/dit/dit-fts/publaynet_dit-b_cascade.pth"
30
+
31
+ # Step 3: set device
32
+ cfg.MODEL.DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
33
+
34
+ # Step 4: define model
35
+ predictor = DefaultPredictor(cfg)
36
+
37
+
38
+ def analyze_image(img):
39
+ md = MetadataCatalog.get(cfg.DATASETS.TEST[0])
40
+ if cfg.DATASETS.TEST[0]=='icdar2019_test':
41
+ md.set(thing_classes=["table"])
42
+ else:
43
+ md.set(thing_classes=["text","title","list","table","figure"])
44
+
45
+ output = predictor(img)["instances"]
46
+ v = Visualizer(img[:, :, ::-1],
47
+ md,
48
+ scale=1.0,
49
+ instance_mode=ColorMode.SEGMENTATION)
50
+ result = v.draw_instance_predictions(output.to("cpu"))
51
+ result_image = result.get_image()[:, :, ::-1]
52
+
53
+ return result_image
54
+
55
+ title = "Interactive demo: Document Layout Analysis with DiT"
56
+ description = "Demo for Microsoft's DiT, the Document Image Transformer for state-of-the-art document understanding tasks. This particular model is fine-tuned on PubLayNet, a large dataset for document layout analysis (read more at the links below). To use it, simply upload an image or use the example image below and click 'Submit'. Results will show up in a few seconds. If you want to make the output bigger, right-click on it and select 'Open image in new tab'."
57
+ article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2203.02378' target='_blank'>Paper</a> | <a href='https://github.com/microsoft/unilm/tree/master/dit' target='_blank'>Github Repo</a></p> | <a href='https://huggingface.co/docs/transformers/master/en/model_doc/dit' target='_blank'>HuggingFace doc</a></p>"
58
+ examples =[['publaynet_example.jpeg']]
59
+ css = ".output-image, .input-image, .image-preview {height: 600px !important}"
60
+
61
+ iface = gr.Interface(fn=analyze_image,
62
+ inputs=gr.inputs.Image(type="numpy", label="document image"),
63
+ outputs=gr.outputs.Image(type="numpy", label="annotated document"),
64
+ title=title,
65
+ description=description,
66
+ examples=examples,
67
+ article=article,
68
+ css=css,
69
+ enable_queue=True)
70
+ iface.launch(debug=True, cache_examples=True)
cascade_dit_base.yml ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-RCNN-FPN.yml"
2
+ MODEL:
3
+ PIXEL_MEAN: [ 127.5, 127.5, 127.5 ]
4
+ PIXEL_STD: [ 127.5, 127.5, 127.5 ]
5
+ WEIGHTS: "https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth"
6
+ VIT:
7
+ NAME: "dit_base_patch16"
8
+ ROI_HEADS:
9
+ NAME: CascadeROIHeads
10
+ ROI_BOX_HEAD:
11
+ CLS_AGNOSTIC_BBOX_REG: True
12
+ RPN:
13
+ POST_NMS_TOPK_TRAIN: 2000
14
+ SOLVER:
15
+ WARMUP_ITERS: 1000
16
+ IMS_PER_BATCH: 16
17
+ MAX_ITER: 60000
18
+ CHECKPOINT_PERIOD: 2000
19
+ TEST:
20
+ EVAL_PERIOD: 2000
packages.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ python3-opencv
publaynet_example.jpeg ADDED
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ pyyaml==5.1
2
+ torch==1.9.0
3
+ torchvision==0.10.0
4
+
5
+ gradio
6
+ numpy
7
+ scipy
8
+ shapely
9
+ timm
10
+ opencv-python