Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -35,6 +35,9 @@ vae = AutoencoderKLCogVideoX.from_pretrained(model_id, subfolder="vae", torch_dt
|
|
| 35 |
tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer")
|
| 36 |
pipe = CogVideoXImageToVideoPipeline.from_pretrained(model_id, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, torch_dtype=torch.float16)
|
| 37 |
|
|
|
|
|
|
|
|
|
|
| 38 |
def find_and_move_object_to_cpu():
|
| 39 |
for obj in gc.get_objects():
|
| 40 |
try:
|
|
@@ -52,52 +55,48 @@ def clear_gpu():
|
|
| 52 |
gc.collect()
|
| 53 |
|
| 54 |
def infer(image_path, prompt, orbit_type, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
lora_path = "checkpoints/"
|
| 57 |
-
if orbit_type == "Left"
|
| 58 |
-
weight_name = "orbit_left_lora_weights.safetensors"
|
| 59 |
-
#adapter_name = "orbit_left_lora_weights"
|
| 60 |
-
elif orbit_type == "Up":
|
| 61 |
-
weight_name = "orbit_up_lora_weights.safetensors"
|
| 62 |
-
#adapter_name = "orbit_up_lora_weights"
|
| 63 |
lora_rank = 128
|
| 64 |
-
|
| 65 |
adapter_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 66 |
|
| 67 |
-
# Load LoRA weights on CPU
|
| 68 |
pipe.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=f"adapter_{adapter_timestamp}")
|
| 69 |
pipe.fuse_lora(lora_scale=1 / lora_rank)
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
-
#
|
| 75 |
-
prompt = f"{prompt}. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
|
| 76 |
-
image = load_image(image_path)
|
| 77 |
-
seed = random.randint(0, 2**8 - 1)
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
video = pipe(
|
| 81 |
-
image,
|
| 82 |
-
prompt,
|
| 83 |
-
num_inference_steps=25,
|
| 84 |
-
guidance_scale=7.0,
|
| 85 |
-
use_dynamic_cfg=True,
|
| 86 |
-
generator=torch.Generator(device="cpu").manual_seed(seed)
|
| 87 |
-
)
|
| 88 |
-
|
| 89 |
-
torch.cuda.empty_cache()
|
| 90 |
-
pipe.unfuse_lora()
|
| 91 |
-
pipe.unload_lora_weights()
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
# Generate and save output video
|
| 95 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 96 |
export_to_video(video.frames[0], f"output_{timestamp}.mp4", fps=8)
|
| 97 |
-
|
| 98 |
-
# Move objects to CPU and clear GPU memory immediately after inference
|
| 99 |
-
find_and_move_object_to_cpu()
|
| 100 |
-
clear_gpu()
|
| 101 |
|
| 102 |
return f"output_{timestamp}.mp4"
|
| 103 |
|
|
|
|
| 35 |
tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer")
|
| 36 |
pipe = CogVideoXImageToVideoPipeline.from_pretrained(model_id, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, torch_dtype=torch.float16)
|
| 37 |
|
| 38 |
+
# Add this near the top after imports
|
| 39 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
|
| 40 |
+
|
| 41 |
def find_and_move_object_to_cpu():
|
| 42 |
for obj in gc.get_objects():
|
| 43 |
try:
|
|
|
|
| 55 |
gc.collect()
|
| 56 |
|
| 57 |
def infer(image_path, prompt, orbit_type, progress=gr.Progress(track_tqdm=True)):
|
| 58 |
+
# Move everything to CPU initially
|
| 59 |
+
pipe.to("cpu")
|
| 60 |
+
torch.cuda.empty_cache()
|
| 61 |
|
| 62 |
lora_path = "checkpoints/"
|
| 63 |
+
weight_name = "orbit_left_lora_weights.safetensors" if orbit_type == "Left" else "orbit_up_lora_weights.safetensors"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
lora_rank = 128
|
|
|
|
| 65 |
adapter_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 66 |
|
| 67 |
+
# Load LoRA weights on CPU
|
| 68 |
pipe.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=f"adapter_{adapter_timestamp}")
|
| 69 |
pipe.fuse_lora(lora_scale=1 / lora_rank)
|
| 70 |
|
| 71 |
+
try:
|
| 72 |
+
# Move to GPU just before inference
|
| 73 |
+
pipe.to("cuda")
|
| 74 |
+
torch.cuda.empty_cache()
|
| 75 |
+
|
| 76 |
+
prompt = f"{prompt}. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
|
| 77 |
+
image = load_image(image_path)
|
| 78 |
+
seed = random.randint(0, 2**8 - 1)
|
| 79 |
+
|
| 80 |
+
with torch.inference_mode():
|
| 81 |
+
video = pipe(
|
| 82 |
+
image,
|
| 83 |
+
prompt,
|
| 84 |
+
num_inference_steps=25,
|
| 85 |
+
guidance_scale=7.0,
|
| 86 |
+
use_dynamic_cfg=True,
|
| 87 |
+
generator=torch.Generator(device="cpu").manual_seed(seed)
|
| 88 |
+
)
|
| 89 |
+
finally:
|
| 90 |
+
# Ensure cleanup happens even if inference fails
|
| 91 |
+
pipe.to("cpu")
|
| 92 |
+
pipe.unfuse_lora()
|
| 93 |
+
pipe.unload_lora_weights()
|
| 94 |
+
torch.cuda.empty_cache()
|
| 95 |
+
gc.collect()
|
| 96 |
|
| 97 |
+
# Generate output video
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 99 |
export_to_video(video.frames[0], f"output_{timestamp}.mp4", fps=8)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
return f"output_{timestamp}.mp4"
|
| 102 |
|