Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,6 +14,7 @@ from huggingface_hub import hf_hub_download
|
|
| 14 |
# Ensure 'checkpoint' directory exists
|
| 15 |
os.makedirs("checkpoints", exist_ok=True)
|
| 16 |
|
|
|
|
| 17 |
hf_hub_download(
|
| 18 |
repo_id="wenqsun/DimensionX",
|
| 19 |
filename="orbit_left_lora_weights.safetensors",
|
|
@@ -26,93 +27,78 @@ hf_hub_download(
|
|
| 26 |
local_dir="checkpoints"
|
| 27 |
)
|
| 28 |
|
|
|
|
| 29 |
model_id = "THUDM/CogVideoX-5b-I2V"
|
| 30 |
-
transformer = CogVideoXTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float16)
|
| 31 |
-
text_encoder = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float16)
|
| 32 |
-
vae = AutoencoderKLCogVideoX.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float16)
|
| 33 |
tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer")
|
| 34 |
-
|
| 35 |
|
| 36 |
def find_and_move_object_to_cpu():
|
| 37 |
for obj in gc.get_objects():
|
| 38 |
try:
|
| 39 |
-
# Check if the object is a PyTorch model
|
| 40 |
if isinstance(obj, torch.nn.Module):
|
| 41 |
-
# Check if any parameter of the model is on CUDA
|
| 42 |
if any(param.is_cuda for param in obj.parameters()):
|
| 43 |
-
print(f"Found PyTorch model on CUDA: {type(obj).__name__}")
|
| 44 |
-
# Move the model to CPU
|
| 45 |
obj.to('cpu')
|
| 46 |
-
print(f"Moved {type(obj).__name__} to CPU.")
|
| 47 |
-
|
| 48 |
-
# Optionally check if buffers are on CUDA
|
| 49 |
if any(buf.is_cuda for buf in obj.buffers()):
|
| 50 |
-
print(f"Found buffer on CUDA in {type(obj).__name__}")
|
| 51 |
obj.to('cpu')
|
| 52 |
-
print(f"Moved buffers of {type(obj).__name__} to CPU.")
|
| 53 |
-
|
| 54 |
except Exception as e:
|
| 55 |
-
# Handle any exceptions if obj is not a torch model
|
| 56 |
pass
|
| 57 |
|
| 58 |
-
|
| 59 |
def clear_gpu():
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
print(f"Memory reserved before clearing: {torch.cuda.memory_reserved() / (1024 ** 2)} MB")
|
| 64 |
-
|
| 65 |
-
# Move any bound tensors back to CPU if needed
|
| 66 |
-
if torch.cuda.is_available():
|
| 67 |
-
torch.cuda.empty_cache()
|
| 68 |
-
torch.cuda.synchronize() # Ensure that all operations are completed
|
| 69 |
-
print("GPU memory cleared.")
|
| 70 |
-
|
| 71 |
-
print(f"Memory allocated after clearing: {torch.cuda.memory_allocated() / (1024 ** 2)} MB")
|
| 72 |
-
print(f"Memory reserved after clearing: {torch.cuda.memory_reserved() / (1024 ** 2)} MB")
|
| 73 |
-
|
| 74 |
|
| 75 |
def infer(image_path, prompt, orbit_type, progress=gr.Progress(track_tqdm=True)):
|
| 76 |
|
| 77 |
-
|
| 78 |
lora_path = "checkpoints/"
|
| 79 |
-
adapter_name = None
|
| 80 |
if orbit_type == "Left":
|
| 81 |
weight_name = "orbit_left_lora_weights.safetensors"
|
| 82 |
elif orbit_type == "Up":
|
| 83 |
weight_name = "orbit_up_lora_weights.safetensors"
|
| 84 |
lora_rank = 256
|
| 85 |
|
|
|
|
|
|
|
| 86 |
# Generate a timestamp for adapter_name
|
| 87 |
adapter_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 88 |
|
|
|
|
| 89 |
pipe.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=f"{adapter_timestamp}")
|
| 90 |
pipe.fuse_lora(lora_scale=1 / lora_rank)
|
|
|
|
|
|
|
| 91 |
pipe.to("cuda")
|
| 92 |
-
|
| 93 |
-
|
| 94 |
prompt = f"{prompt}. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
|
| 95 |
image = load_image(image_path)
|
| 96 |
seed = random.randint(0, 2**8 - 1)
|
| 97 |
|
|
|
|
| 98 |
video = pipe(
|
| 99 |
image,
|
| 100 |
prompt,
|
| 101 |
-
num_inference_steps=50,
|
| 102 |
-
guidance_scale=7.0,
|
| 103 |
use_dynamic_cfg=True,
|
| 104 |
generator=torch.Generator(device="cpu").manual_seed(seed)
|
| 105 |
)
|
| 106 |
-
|
| 107 |
-
find_and_move_object_to_cpu()
|
| 108 |
-
clear_gpu()
|
| 109 |
|
| 110 |
-
# Generate
|
| 111 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 112 |
export_to_video(video.frames[0], f"output_{timestamp}.mp4", fps=8)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
return f"output_{timestamp}.mp4"
|
| 115 |
|
|
|
|
| 116 |
with gr.Blocks(analytics_enabled=False) as demo:
|
| 117 |
with gr.Column(elem_id="col-container"):
|
| 118 |
gr.Markdown("# DimensionX")
|
|
|
|
| 14 |
# Ensure 'checkpoint' directory exists
|
| 15 |
os.makedirs("checkpoints", exist_ok=True)
|
| 16 |
|
| 17 |
+
# Download LoRA weights
|
| 18 |
hf_hub_download(
|
| 19 |
repo_id="wenqsun/DimensionX",
|
| 20 |
filename="orbit_left_lora_weights.safetensors",
|
|
|
|
| 27 |
local_dir="checkpoints"
|
| 28 |
)
|
| 29 |
|
| 30 |
+
# Load models in the global scope
|
| 31 |
model_id = "THUDM/CogVideoX-5b-I2V"
|
| 32 |
+
transformer = CogVideoXTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float16).to("cpu")
|
| 33 |
+
text_encoder = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float16).to("cpu")
|
| 34 |
+
vae = AutoencoderKLCogVideoX.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float16).to("cpu")
|
| 35 |
tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer")
|
| 36 |
+
pipe = CogVideoXImageToVideoPipeline.from_pretrained(model_id, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, torch_dtype=torch.float16)
|
| 37 |
|
| 38 |
def find_and_move_object_to_cpu():
|
| 39 |
for obj in gc.get_objects():
|
| 40 |
try:
|
|
|
|
| 41 |
if isinstance(obj, torch.nn.Module):
|
|
|
|
| 42 |
if any(param.is_cuda for param in obj.parameters()):
|
|
|
|
|
|
|
| 43 |
obj.to('cpu')
|
|
|
|
|
|
|
|
|
|
| 44 |
if any(buf.is_cuda for buf in obj.buffers()):
|
|
|
|
| 45 |
obj.to('cpu')
|
|
|
|
|
|
|
| 46 |
except Exception as e:
|
|
|
|
| 47 |
pass
|
| 48 |
|
|
|
|
| 49 |
def clear_gpu():
|
| 50 |
+
torch.cuda.empty_cache()
|
| 51 |
+
torch.cuda.synchronize()
|
| 52 |
+
gc.collect()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
def infer(image_path, prompt, orbit_type, progress=gr.Progress(track_tqdm=True)):
|
| 55 |
|
| 56 |
+
|
| 57 |
lora_path = "checkpoints/"
|
|
|
|
| 58 |
if orbit_type == "Left":
|
| 59 |
weight_name = "orbit_left_lora_weights.safetensors"
|
| 60 |
elif orbit_type == "Up":
|
| 61 |
weight_name = "orbit_up_lora_weights.safetensors"
|
| 62 |
lora_rank = 256
|
| 63 |
|
| 64 |
+
pipe.unload_lora_weights()
|
| 65 |
+
|
| 66 |
# Generate a timestamp for adapter_name
|
| 67 |
adapter_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 68 |
|
| 69 |
+
# Load LoRA weights on CPU, move to GPU afterward
|
| 70 |
pipe.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=f"{adapter_timestamp}")
|
| 71 |
pipe.fuse_lora(lora_scale=1 / lora_rank)
|
| 72 |
+
|
| 73 |
+
# Move the pipeline to GPU for inference
|
| 74 |
pipe.to("cuda")
|
| 75 |
+
|
| 76 |
+
# Set the inference prompt
|
| 77 |
prompt = f"{prompt}. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
|
| 78 |
image = load_image(image_path)
|
| 79 |
seed = random.randint(0, 2**8 - 1)
|
| 80 |
|
| 81 |
+
|
| 82 |
video = pipe(
|
| 83 |
image,
|
| 84 |
prompt,
|
| 85 |
+
num_inference_steps=50,
|
| 86 |
+
guidance_scale=7.0,
|
| 87 |
use_dynamic_cfg=True,
|
| 88 |
generator=torch.Generator(device="cpu").manual_seed(seed)
|
| 89 |
)
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
+
# Generate and save output video
|
| 92 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 93 |
export_to_video(video.frames[0], f"output_{timestamp}.mp4", fps=8)
|
| 94 |
+
|
| 95 |
+
# Move objects to CPU and clear GPU memory immediately after inference
|
| 96 |
+
find_and_move_object_to_cpu()
|
| 97 |
+
clear_gpu()
|
| 98 |
|
| 99 |
return f"output_{timestamp}.mp4"
|
| 100 |
|
| 101 |
+
# Set up Gradio UI
|
| 102 |
with gr.Blocks(analytics_enabled=False) as demo:
|
| 103 |
with gr.Column(elem_id="col-container"):
|
| 104 |
gr.Markdown("# DimensionX")
|