File size: 9,411 Bytes
6cd5133
b4acdb1
eb23cc1
 
 
6cd5133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb23cc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cd5133
b4acdb1
eb23cc1
 
 
 
 
 
 
6cd5133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4acdb1
6cd5133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4acdb1
 
 
6cd5133
 
 
 
 
 
b4acdb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cd5133
 
 
 
eb23cc1
6cd5133
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import os, random, time
import uuid
import tempfile
from pydub import AudioSegment
import gradio as gr
from huggingface_hub import snapshot_download

# Download models
os.makedirs("checkpoints", exist_ok=True)

# List of subdirectories to create inside "checkpoints"
subfolders = [
    "vae",
    "wav2vec2",
    "emotion2vec_plus_large"
]

# Create each subdirectory
for subfolder in subfolders:
    os.makedirs(os.path.join("checkpoints", subfolder), exist_ok=True)

snapshot_download(
    repo_id = "memoavatar/memo",
    local_dir = "./checkpoints"  
)

snapshot_download(
    repo_id = "stabilityai/sd-vae-ft-mse",
    local_dir = "./checkpoints/vae" 
)

snapshot_download(
    repo_id = "facebook/wav2vec2-base-960h",
    local_dir = "./checkpoints/wav2vec2" 
)

snapshot_download(
    repo_id = "emotion2vec/emotion2vec_plus_large",
    local_dir = "./checkpoints/emotion2vec_plus_large" 
)

import torch
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from tqdm import tqdm

from memo.models.audio_proj import AudioProjModel
from memo.models.image_proj import ImageProjModel
from memo.models.unet_2d_condition import UNet2DConditionModel
from memo.models.unet_3d import UNet3DConditionModel
from memo.pipelines.video_pipeline import VideoPipeline
from memo.utils.audio_utils import extract_audio_emotion_labels, preprocess_audio, resample_audio
from memo.utils.vision_utils import preprocess_image, tensor_to_video

device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
weight_dtype = torch.bfloat16

with torch.inference_mode():
    vae = AutoencoderKL.from_pretrained("./checkpoints/vae").to(device=device, dtype=weight_dtype)
    reference_net = UNet2DConditionModel.from_pretrained("./checkpoints", subfolder="reference_net", use_safetensors=True)
    diffusion_net = UNet3DConditionModel.from_pretrained("./checkpoints", subfolder="diffusion_net", use_safetensors=True)
    image_proj = ImageProjModel.from_pretrained("./checkpoints", subfolder="image_proj", use_safetensors=True)
    audio_proj = AudioProjModel.from_pretrained("./checkpoints", subfolder="audio_proj", use_safetensors=True)

    vae.requires_grad_(False).eval()
    reference_net.requires_grad_(False).eval()
    diffusion_net.requires_grad_(False).eval()
    image_proj.requires_grad_(False).eval()
    audio_proj.requires_grad_(False).eval()
    reference_net.enable_xformers_memory_efficient_attention()
    diffusion_net.enable_xformers_memory_efficient_attention()

    noise_scheduler = FlowMatchEulerDiscreteScheduler()
    pipeline = VideoPipeline(vae=vae, reference_net=reference_net, diffusion_net=diffusion_net, scheduler=noise_scheduler, image_proj=image_proj)
    pipeline.to(device=device, dtype=weight_dtype)

def process_audio(file_path):
    # Create a temporary directory
    with tempfile.TemporaryDirectory() as temp_dir:
        # Load the audio file
        audio = AudioSegment.from_file(file_path)
        
        # Check and cut the audio if longer than 4 seconds
        max_duration = 4 * 1000  # 4 seconds in milliseconds
        if len(audio) > max_duration:
            audio = audio[:max_duration]
        
        # Save the processed audio in the temporary directory
        output_path = os.path.join(temp_dir, "trimmed_audio.wav")
        audio.export(output_path, format="wav")
        
        # Temporary file is available here for use
        print(f"Processed audio saved at: {output_path}")
        
        # Return the path for reference (optional)
        return output_path

@torch.inference_mode()
def generate(input_video, input_audio, seed, progress=gr.Progress(track_tqdm=True)):

    is_shared_ui = True if "fffiloni/MEMO" in os.environ['SPACE_ID'] else False

    if is_shared_ui:
        input_audio = process_audio(input_audio)
        print(f"Processed file was stored temporarily at: {input_audio}")
    
    resolution = 512
    num_generated_frames_per_clip = 16
    fps = 30
    num_init_past_frames = 2
    num_past_frames = 16
    inference_steps = 20
    cfg_scale = 3.5

    if seed == 0:
        random.seed(int(time.time()))
        seed = random.randint(0, 18446744073709551615)

    generator = torch.manual_seed(seed)
    img_size = (resolution, resolution)
    pixel_values, face_emb = preprocess_image(face_analysis_model="./checkpoints/misc/face_analysis", image_path=input_video, image_size=resolution)
    
    output_dir = "./outputs"
    os.makedirs(output_dir, exist_ok=True)
    cache_dir = os.path.join(output_dir, "audio_preprocess")
    os.makedirs(cache_dir, exist_ok=True)
    input_audio = resample_audio(input_audio, os.path.join(cache_dir, f"{os.path.basename(input_audio).split('.')[0]}-16k.wav"))

    audio_emb, audio_length = preprocess_audio(
        wav_path=input_audio,
        num_generated_frames_per_clip=num_generated_frames_per_clip,
        fps=fps,
        wav2vec_model="./checkpoints/wav2vec2",
        vocal_separator_model="./checkpoints/misc/vocal_separator/Kim_Vocal_2.onnx",
        cache_dir=cache_dir,
        device=device,
    )
    audio_emotion, num_emotion_classes = extract_audio_emotion_labels(
        model="./checkpoints",
        wav_path=input_audio,
        emotion2vec_model="./checkpoints/emotion2vec_plus_large",
        audio_length=audio_length,
        device=device,
    )

    video_frames = []
    num_clips = audio_emb.shape[0] // num_generated_frames_per_clip
    for t in tqdm(range(num_clips), desc="Generating video clips"):
        if len(video_frames) == 0:
            past_frames = pixel_values.repeat(num_init_past_frames, 1, 1, 1)
            past_frames = past_frames.to(dtype=pixel_values.dtype, device=pixel_values.device)
            pixel_values_ref_img = torch.cat([pixel_values, past_frames], dim=0)
        else:
            past_frames = video_frames[-1][0]
            past_frames = past_frames.permute(1, 0, 2, 3)
            past_frames = past_frames[0 - num_past_frames :]
            past_frames = past_frames * 2.0 - 1.0
            past_frames = past_frames.to(dtype=pixel_values.dtype, device=pixel_values.device)
            pixel_values_ref_img = torch.cat([pixel_values, past_frames], dim=0)

        pixel_values_ref_img = pixel_values_ref_img.unsqueeze(0)
        audio_tensor = (audio_emb[t * num_generated_frames_per_clip : min((t + 1) * num_generated_frames_per_clip, audio_emb.shape[0])].unsqueeze(0).to(device=audio_proj.device, dtype=audio_proj.dtype))
        audio_tensor = audio_proj(audio_tensor)
        audio_emotion_tensor = audio_emotion[t * num_generated_frames_per_clip : min((t + 1) * num_generated_frames_per_clip, audio_emb.shape[0])]

        pipeline_output = pipeline(
            ref_image=pixel_values_ref_img,
            audio_tensor=audio_tensor,
            audio_emotion=audio_emotion_tensor,
            emotion_class_num=num_emotion_classes,
            face_emb=face_emb,
            width=img_size[0],
            height=img_size[1],
            video_length=num_generated_frames_per_clip,
            num_inference_steps=inference_steps,
            guidance_scale=cfg_scale,
            generator=generator,
        )
        video_frames.append(pipeline_output.videos)

    video_frames = torch.cat(video_frames, dim=2)
    video_frames = video_frames.squeeze(0)
    video_frames = video_frames[:, :audio_length]

    # Save the output video
    unique_id = str(uuid.uuid4())
    video_path = os.path.join(output_dir, f"memo-{seed}_{unique_id}.png")
    tensor_to_video(video_frames, video_path, input_audio, fps=fps)

    return video_path

with gr.Blocks(analytics_enabled=False) as demo:
    with gr.Column():
        gr.Markdown("# MEMO: Memory-Guided Diffusion for Expressive Talking Video Generation")
        gr.HTML("""
        <div style="display:flex;column-gap:4px;">
            <a href="https://github.com/memoavatar/memo">
                <img src='https://img.shields.io/badge/GitHub-Repo-blue'>
            </a> 
            <a href="https://memoavatar.github.io/">
                <img src='https://img.shields.io/badge/Project-Page-green'>
            </a>
			<a href="https://arxiv.org/abs/2412.04448">
                <img src='https://img.shields.io/badge/ArXiv-Paper-red'>
            </a>
            <a href="https://huggingface.co/spaces/fffiloni/MEMO?duplicate=true">
				<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
			</a>
			<a href="https://huggingface.co/fffiloni">
				<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF">
			</a>
        </div>
        """)
        
        with gr.Row():
            with gr.Column():
                input_video = gr.Image(label="Upload Input Image", type="filepath")
                input_audio = gr.Audio(label="Upload Input Audio", type="filepath", info="On shared UI, audio length is trimmed to max 4 seconds")
                seed = gr.Number(label="Seed (0 for Random)", value=0, precision=0)
            with gr.Column():
                video_output = gr.Video(label="Generated Video")
                generate_button = gr.Button("Generate")

    generate_button.click(
        fn=generate,
        inputs=[input_video, input_audio, seed],
        outputs=[video_output],
    )

demo.queue().launch(share=False, show_api=False, show_error=True)