MEMO / hf_gradio_app.py
hysts's picture
hysts HF Staff
ZeroGPU
fc75e11
raw
history blame
10 kB
import os, random, time
import spaces
import uuid
import tempfile, shutil
from pydub import AudioSegment
import gradio as gr
from huggingface_hub import snapshot_download
# Download models
os.makedirs("checkpoints", exist_ok=True)
# List of subdirectories to create inside "checkpoints"
subfolders = [
"vae",
"wav2vec2",
"emotion2vec_plus_large"
]
# Create each subdirectory
for subfolder in subfolders:
os.makedirs(os.path.join("checkpoints", subfolder), exist_ok=True)
snapshot_download(
repo_id = "memoavatar/memo",
local_dir = "./checkpoints"
)
snapshot_download(
repo_id = "stabilityai/sd-vae-ft-mse",
local_dir = "./checkpoints/vae"
)
snapshot_download(
repo_id = "facebook/wav2vec2-base-960h",
local_dir = "./checkpoints/wav2vec2"
)
snapshot_download(
repo_id = "emotion2vec/emotion2vec_plus_large",
local_dir = "./checkpoints/emotion2vec_plus_large"
)
import torch
# CUDA version
print("CUDA Version (from PyTorch):", torch.version.cuda)
# cuDNN version
print("cuDNN Version (from PyTorch):", torch.backends.cudnn.version())
# Is CUDA available
print("Is CUDA available:", torch.cuda.is_available())
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from tqdm import tqdm
from memo.models.audio_proj import AudioProjModel
from memo.models.image_proj import ImageProjModel
from memo.models.unet_2d_condition import UNet2DConditionModel
from memo.models.unet_3d import UNet3DConditionModel
from memo.pipelines.video_pipeline import VideoPipeline
from memo.utils.audio_utils import extract_audio_emotion_labels, preprocess_audio, resample_audio
from memo.utils.vision_utils import preprocess_image, tensor_to_video
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
weight_dtype = torch.bfloat16
vae = AutoencoderKL.from_pretrained("./checkpoints/vae").to(device=device, dtype=weight_dtype)
reference_net = UNet2DConditionModel.from_pretrained("./checkpoints", subfolder="reference_net", use_safetensors=True)
diffusion_net = UNet3DConditionModel.from_pretrained("./checkpoints", subfolder="diffusion_net", use_safetensors=True)
image_proj = ImageProjModel.from_pretrained("./checkpoints", subfolder="image_proj", use_safetensors=True)
audio_proj = AudioProjModel.from_pretrained("./checkpoints", subfolder="audio_proj", use_safetensors=True)
vae.requires_grad_(False).eval()
reference_net.requires_grad_(False).eval()
diffusion_net.requires_grad_(False).eval()
image_proj.requires_grad_(False).eval()
audio_proj.requires_grad_(False).eval()
noise_scheduler = FlowMatchEulerDiscreteScheduler()
pipeline = VideoPipeline(vae=vae, reference_net=reference_net, diffusion_net=diffusion_net, scheduler=noise_scheduler, image_proj=image_proj)
pipeline.to(device=device, dtype=weight_dtype)
def process_audio(file_path, temp_dir):
# Load the audio file
audio = AudioSegment.from_file(file_path)
# Check and cut the audio if longer than 4 seconds
max_duration = 4 * 1000 # 4 seconds in milliseconds
if len(audio) > max_duration:
audio = audio[:max_duration]
# Save the processed audio in the temporary directory
output_path = os.path.join(temp_dir, "trimmed_audio.wav")
audio.export(output_path, format="wav")
# Return the path to the trimmed file
print(f"Processed audio saved at: {output_path}")
return output_path
@spaces.GPU(duration=240)
@torch.inference_mode()
def generate(input_video, input_audio, seed, progress=gr.Progress(track_tqdm=True)):
pipeline.reference_net.enable_xformers_memory_efficient_attention()
pipeline.diffusion_net.enable_xformers_memory_efficient_attention()
is_shared_ui = True if "fffiloni/MEMO" in os.environ['SPACE_ID'] else False
temp_dir = None
if is_shared_ui:
temp_dir = tempfile.mkdtemp()
input_audio = process_audio(input_audio, temp_dir)
print(f"Processed file was stored temporarily at: {input_audio}")
resolution = 512
num_generated_frames_per_clip = 16
fps = 30
num_init_past_frames = 2
num_past_frames = 16
inference_steps = 20
cfg_scale = 3.5
if seed == 0:
random.seed(int(time.time()))
seed = random.randint(0, 18446744073709551615)
generator = torch.manual_seed(seed)
img_size = (resolution, resolution)
pixel_values, face_emb = preprocess_image(face_analysis_model="./checkpoints/misc/face_analysis", image_path=input_video, image_size=resolution)
output_dir = "./outputs"
os.makedirs(output_dir, exist_ok=True)
cache_dir = os.path.join(output_dir, "audio_preprocess")
os.makedirs(cache_dir, exist_ok=True)
input_audio = resample_audio(input_audio, os.path.join(cache_dir, f"{os.path.basename(input_audio).split('.')[0]}-16k.wav"))
if is_shared_ui:
# Clean up the temporary directory
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
print(f"Temporary directory {temp_dir} deleted.")
audio_emb, audio_length = preprocess_audio(
wav_path=input_audio,
num_generated_frames_per_clip=num_generated_frames_per_clip,
fps=fps,
wav2vec_model="./checkpoints/wav2vec2",
vocal_separator_model="./checkpoints/misc/vocal_separator/Kim_Vocal_2.onnx",
cache_dir=cache_dir,
device=device,
)
audio_emotion, num_emotion_classes = extract_audio_emotion_labels(
model="./checkpoints",
wav_path=input_audio,
emotion2vec_model="./checkpoints/emotion2vec_plus_large",
audio_length=audio_length,
device=device,
)
video_frames = []
num_clips = audio_emb.shape[0] // num_generated_frames_per_clip
for t in tqdm(range(num_clips), desc="Generating video clips"):
if len(video_frames) == 0:
past_frames = pixel_values.repeat(num_init_past_frames, 1, 1, 1)
past_frames = past_frames.to(dtype=pixel_values.dtype, device=pixel_values.device)
pixel_values_ref_img = torch.cat([pixel_values, past_frames], dim=0)
else:
past_frames = video_frames[-1][0]
past_frames = past_frames.permute(1, 0, 2, 3)
past_frames = past_frames[0 - num_past_frames :]
past_frames = past_frames * 2.0 - 1.0
past_frames = past_frames.to(dtype=pixel_values.dtype, device=pixel_values.device)
pixel_values_ref_img = torch.cat([pixel_values, past_frames], dim=0)
pixel_values_ref_img = pixel_values_ref_img.unsqueeze(0)
audio_tensor = (audio_emb[t * num_generated_frames_per_clip : min((t + 1) * num_generated_frames_per_clip, audio_emb.shape[0])].unsqueeze(0).to(device=audio_proj.device, dtype=audio_proj.dtype))
audio_tensor = audio_proj(audio_tensor)
audio_emotion_tensor = audio_emotion[t * num_generated_frames_per_clip : min((t + 1) * num_generated_frames_per_clip, audio_emb.shape[0])]
pipeline_output = pipeline(
ref_image=pixel_values_ref_img,
audio_tensor=audio_tensor,
audio_emotion=audio_emotion_tensor,
emotion_class_num=num_emotion_classes,
face_emb=face_emb,
width=img_size[0],
height=img_size[1],
video_length=num_generated_frames_per_clip,
num_inference_steps=inference_steps,
guidance_scale=cfg_scale,
generator=generator,
)
video_frames.append(pipeline_output.videos)
pipeline.reference_net.disable_xformers_memory_efficient_attention()
pipeline.diffusion_net.disable_xformers_memory_efficient_attention()
video_frames = torch.cat(video_frames, dim=2)
video_frames = video_frames.squeeze(0)
video_frames = video_frames[:, :audio_length]
# Save the output video
unique_id = str(uuid.uuid4())
video_path = os.path.join(output_dir, f"memo-{seed}_{unique_id}.mp4")
tensor_to_video(video_frames, video_path, input_audio, fps=fps)
return video_path
with gr.Blocks(analytics_enabled=False) as demo:
with gr.Column():
gr.Markdown("# MEMO: Memory-Guided Diffusion for Expressive Talking Video Generation")
gr.Markdown("Note: On fffiloni's shared UI, audio length is trimmed to max 4 seconds, so everyone can get a taste without to much waiting time in queue.")
gr.Markdown("Duplicate the space to skip the queue and enjoy full length capacity.")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/memoavatar/memo">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://memoavatar.github.io/">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://arxiv.org/abs/2412.04448">
<img src='https://img.shields.io/badge/ArXiv-Paper-red'>
</a>
<a href="https://huggingface.co/spaces/fffiloni/MEMO?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
<a href="https://huggingface.co/fffiloni">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF">
</a>
</div>
""")
with gr.Row():
with gr.Column():
input_video = gr.Image(label="Upload Input Image", type="filepath")
input_audio = gr.Audio(label="Upload Input Audio", type="filepath")
seed = gr.Number(label="Seed (0 for Random)", value=0, precision=0)
with gr.Column():
video_output = gr.Video(label="Generated Video")
generate_button = gr.Button("Generate")
generate_button.click(
fn=generate,
inputs=[input_video, input_audio, seed],
outputs=[video_output],
)
demo.queue().launch(share=False, show_api=False, show_error=True)