fffiloni commited on
Commit
79da463
·
verified ·
1 Parent(s): aad500f

Update hf_gradio_app.py

Browse files
Files changed (1) hide show
  1. hf_gradio_app.py +16 -16
hf_gradio_app.py CHANGED
@@ -65,22 +65,22 @@ from memo.utils.vision_utils import preprocess_image, tensor_to_video
65
  device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
66
  weight_dtype = torch.bfloat16
67
 
68
- #with torch.inference_mode():
69
- vae = AutoencoderKL.from_pretrained("./checkpoints/vae").to(device=device, dtype=weight_dtype)
70
- reference_net = UNet2DConditionModel.from_pretrained("./checkpoints", subfolder="reference_net", use_safetensors=True)
71
- diffusion_net = UNet3DConditionModel.from_pretrained("./checkpoints", subfolder="diffusion_net", use_safetensors=True)
72
- image_proj = ImageProjModel.from_pretrained("./checkpoints", subfolder="image_proj", use_safetensors=True)
73
- audio_proj = AudioProjModel.from_pretrained("./checkpoints", subfolder="audio_proj", use_safetensors=True)
74
- vae.requires_grad_(False).eval()
75
- reference_net.requires_grad_(False).eval()
76
- diffusion_net.requires_grad_(False).eval()
77
- image_proj.requires_grad_(False).eval()
78
- audio_proj.requires_grad_(False).eval()
79
- #reference_net.enable_xformers_memory_efficient_attention()
80
- #diffusion_net.enable_xformers_memory_efficient_attention()
81
- noise_scheduler = FlowMatchEulerDiscreteScheduler()
82
- pipeline = VideoPipeline(vae=vae, reference_net=reference_net, diffusion_net=diffusion_net, scheduler=noise_scheduler, image_proj=image_proj)
83
- #pipeline.to(device=device, dtype=weight_dtype)
84
 
85
  def process_audio(file_path, temp_dir):
86
  # Load the audio file
 
65
  device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
66
  weight_dtype = torch.bfloat16
67
 
68
+ with torch.inference_mode():
69
+ vae = AutoencoderKL.from_pretrained("./checkpoints/vae").to(device=device, dtype=weight_dtype)
70
+ reference_net = UNet2DConditionModel.from_pretrained("./checkpoints", subfolder="reference_net", use_safetensors=True)
71
+ diffusion_net = UNet3DConditionModel.from_pretrained("./checkpoints", subfolder="diffusion_net", use_safetensors=True)
72
+ image_proj = ImageProjModel.from_pretrained("./checkpoints", subfolder="image_proj", use_safetensors=True)
73
+ audio_proj = AudioProjModel.from_pretrained("./checkpoints", subfolder="audio_proj", use_safetensors=True)
74
+ vae.requires_grad_(False).eval()
75
+ reference_net.requires_grad_(False).eval()
76
+ diffusion_net.requires_grad_(False).eval()
77
+ image_proj.requires_grad_(False).eval()
78
+ audio_proj.requires_grad_(False).eval()
79
+ #reference_net.enable_xformers_memory_efficient_attention()
80
+ #diffusion_net.enable_xformers_memory_efficient_attention()
81
+ noise_scheduler = FlowMatchEulerDiscreteScheduler()
82
+ pipeline = VideoPipeline(vae=vae, reference_net=reference_net, diffusion_net=diffusion_net, scheduler=noise_scheduler, image_proj=image_proj)
83
+ #pipeline.to(device=device, dtype=weight_dtype)
84
 
85
  def process_audio(file_path, temp_dir):
86
  # Load the audio file