Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn.functional as F | |
| import numpy as np | |
| ''' Rotation Converter | |
| This function is borrowed from https://github.com/kornia/kornia | |
| ref: https://kornia.readthedocs.io/en/v0.1.2/_modules/torchgeometry/core/conversions.html# | |
| Repre: euler angle(3), axis angle(3), rotation matrix(3x3), quaternion(4), continuous rotation representation (6) | |
| batch_rodrigues: axis angle -> matrix | |
| ''' | |
| pi = torch.Tensor([3.14159265358979323846]) | |
| def rad2deg(tensor): | |
| """Function that converts angles from radians to degrees. | |
| See :class:`~torchgeometry.RadToDeg` for details. | |
| Args: | |
| tensor (Tensor): Tensor of arbitrary shape. | |
| Returns: | |
| Tensor: Tensor with same shape as input. | |
| Example: | |
| >>> input = tgm.pi * torch.rand(1, 3, 3) | |
| >>> output = tgm.rad2deg(input) | |
| """ | |
| if not torch.is_tensor(tensor): | |
| raise TypeError("Input type is not a torch.Tensor. Got {}".format( | |
| type(tensor))) | |
| return 180. * tensor / pi.to(tensor.device).type(tensor.dtype) | |
| def deg2rad(tensor): | |
| """Function that converts angles from degrees to radians. | |
| See :class:`~torchgeometry.DegToRad` for details. | |
| Args: | |
| tensor (Tensor): Tensor of arbitrary shape. | |
| Returns: | |
| Tensor: Tensor with same shape as input. | |
| Examples:: | |
| >>> input = 360. * torch.rand(1, 3, 3) | |
| >>> output = tgm.deg2rad(input) | |
| """ | |
| if not torch.is_tensor(tensor): | |
| raise TypeError("Input type is not a torch.Tensor. Got {}".format( | |
| type(tensor))) | |
| return tensor * pi.to(tensor.device).type(tensor.dtype) / 180. | |
| # to quaternion | |
| def euler_to_quaternion(r): | |
| x = r[..., 0] | |
| y = r[..., 1] | |
| z = r[..., 2] | |
| z = z / 2.0 | |
| y = y / 2.0 | |
| x = x / 2.0 | |
| cz = torch.cos(z) | |
| sz = torch.sin(z) | |
| cy = torch.cos(y) | |
| sy = torch.sin(y) | |
| cx = torch.cos(x) | |
| sx = torch.sin(x) | |
| quaternion = torch.zeros_like(r.repeat(1, 2))[..., :4].to(r.device) | |
| quaternion[..., 0] += cx * cy * cz - sx * sy * sz | |
| quaternion[..., 1] += cx * sy * sz + cy * cz * sx | |
| quaternion[..., 2] += cx * cz * sy - sx * cy * sz | |
| quaternion[..., 3] += cx * cy * sz + sx * cz * sy | |
| return quaternion | |
| def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6): | |
| """Convert 3x4 rotation matrix to 4d quaternion vector | |
| This algorithm is based on algorithm described in | |
| https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201 | |
| Args: | |
| rotation_matrix (Tensor): the rotation matrix to convert. | |
| Return: | |
| Tensor: the rotation in quaternion | |
| Shape: | |
| - Input: :math:`(N, 3, 4)` | |
| - Output: :math:`(N, 4)` | |
| Example: | |
| >>> input = torch.rand(4, 3, 4) # Nx3x4 | |
| >>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4 | |
| """ | |
| if not torch.is_tensor(rotation_matrix): | |
| raise TypeError("Input type is not a torch.Tensor. Got {}".format( | |
| type(rotation_matrix))) | |
| if len(rotation_matrix.shape) > 3: | |
| raise ValueError( | |
| "Input size must be a three dimensional tensor. Got {}".format( | |
| rotation_matrix.shape)) | |
| # if not rotation_matrix.shape[-2:] == (3, 4): | |
| # raise ValueError( | |
| # "Input size must be a N x 3 x 4 tensor. Got {}".format( | |
| # rotation_matrix.shape)) | |
| rmat_t = torch.transpose(rotation_matrix, 1, 2) | |
| mask_d2 = rmat_t[:, 2, 2] < eps | |
| mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1] | |
| mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1] | |
| t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2] | |
| q0 = torch.stack([ | |
| rmat_t[:, 1, 2] - rmat_t[:, 2, 1], t0, | |
| rmat_t[:, 0, 1] + rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2] | |
| ], -1) | |
| t0_rep = t0.repeat(4, 1).t() | |
| t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2] | |
| q1 = torch.stack([ | |
| rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] + rmat_t[:, 1, 0], | |
| t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1] | |
| ], -1) | |
| t1_rep = t1.repeat(4, 1).t() | |
| t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2] | |
| q2 = torch.stack([ | |
| rmat_t[:, 0, 1] - rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2], | |
| rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2 | |
| ], -1) | |
| t2_rep = t2.repeat(4, 1).t() | |
| t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2] | |
| q3 = torch.stack([ | |
| t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1], | |
| rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] - rmat_t[:, 1, 0] | |
| ], -1) | |
| t3_rep = t3.repeat(4, 1).t() | |
| mask_c0 = mask_d2 * mask_d0_d1.float() | |
| mask_c1 = mask_d2 * (1 - mask_d0_d1.float()) | |
| mask_c2 = (1 - mask_d2.float()) * mask_d0_nd1 | |
| mask_c3 = (1 - mask_d2.float()) * (1 - mask_d0_nd1.float()) | |
| mask_c0 = mask_c0.view(-1, 1).type_as(q0) | |
| mask_c1 = mask_c1.view(-1, 1).type_as(q1) | |
| mask_c2 = mask_c2.view(-1, 1).type_as(q2) | |
| mask_c3 = mask_c3.view(-1, 1).type_as(q3) | |
| q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3 | |
| q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 + # noqa | |
| t2_rep * mask_c2 + t3_rep * mask_c3) # noqa | |
| q *= 0.5 | |
| return q | |
| def angle_axis_to_quaternion(angle_axis: torch.Tensor) -> torch.Tensor: | |
| """Convert an angle axis to a quaternion. | |
| Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h | |
| Args: | |
| angle_axis (torch.Tensor): tensor with angle axis. | |
| Return: | |
| torch.Tensor: tensor with quaternion. | |
| Shape: | |
| - Input: :math:`(*, 3)` where `*` means, any number of dimensions | |
| - Output: :math:`(*, 4)` | |
| Example: | |
| >>> angle_axis = torch.rand(2, 4) # Nx4 | |
| >>> quaternion = tgm.angle_axis_to_quaternion(angle_axis) # Nx3 | |
| """ | |
| if not torch.is_tensor(angle_axis): | |
| raise TypeError("Input type is not a torch.Tensor. Got {}".format( | |
| type(angle_axis))) | |
| if not angle_axis.shape[-1] == 3: | |
| raise ValueError( | |
| "Input must be a tensor of shape Nx3 or 3. Got {}".format( | |
| angle_axis.shape)) | |
| # unpack input and compute conversion | |
| a0: torch.Tensor = angle_axis[..., 0:1] | |
| a1: torch.Tensor = angle_axis[..., 1:2] | |
| a2: torch.Tensor = angle_axis[..., 2:3] | |
| theta_squared: torch.Tensor = a0 * a0 + a1 * a1 + a2 * a2 | |
| theta: torch.Tensor = torch.sqrt(theta_squared) | |
| half_theta: torch.Tensor = theta * 0.5 | |
| mask: torch.Tensor = theta_squared > 0.0 | |
| ones: torch.Tensor = torch.ones_like(half_theta) | |
| k_neg: torch.Tensor = 0.5 * ones | |
| k_pos: torch.Tensor = torch.sin(half_theta) / theta | |
| k: torch.Tensor = torch.where(mask, k_pos, k_neg) | |
| w: torch.Tensor = torch.where(mask, torch.cos(half_theta), ones) | |
| quaternion: torch.Tensor = torch.zeros_like(angle_axis) | |
| quaternion[..., 0:1] += a0 * k | |
| quaternion[..., 1:2] += a1 * k | |
| quaternion[..., 2:3] += a2 * k | |
| return torch.cat([w, quaternion], dim=-1) | |
| # quaternion to | |
| def quaternion_to_rotation_matrix(quat): | |
| """Convert quaternion coefficients to rotation matrix. | |
| Args: | |
| quat: size = [B, 4] 4 <===>(w, x, y, z) | |
| Returns: | |
| Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] | |
| """ | |
| norm_quat = quat | |
| norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True) | |
| w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, | |
| 2], norm_quat[:, | |
| 3] | |
| B = quat.size(0) | |
| w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) | |
| wx, wy, wz = w * x, w * y, w * z | |
| xy, xz, yz = x * y, x * z, y * z | |
| rotMat = torch.stack([ | |
| w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy, | |
| w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz, | |
| w2 - x2 - y2 + z2 | |
| ], | |
| dim=1).view(B, 3, 3) | |
| return rotMat | |
| def quaternion_to_angle_axis(quaternion: torch.Tensor): | |
| """Convert quaternion vector to angle axis of rotation. TODO: CORRECT | |
| Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h | |
| Args: | |
| quaternion (torch.Tensor): tensor with quaternions. | |
| Return: | |
| torch.Tensor: tensor with angle axis of rotation. | |
| Shape: | |
| - Input: :math:`(*, 4)` where `*` means, any number of dimensions | |
| - Output: :math:`(*, 3)` | |
| Example: | |
| >>> quaternion = torch.rand(2, 4) # Nx4 | |
| >>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3 | |
| """ | |
| if not torch.is_tensor(quaternion): | |
| raise TypeError("Input type is not a torch.Tensor. Got {}".format( | |
| type(quaternion))) | |
| if not quaternion.shape[-1] == 4: | |
| raise ValueError( | |
| "Input must be a tensor of shape Nx4 or 4. Got {}".format( | |
| quaternion.shape)) | |
| # unpack input and compute conversion | |
| q1: torch.Tensor = quaternion[..., 1] | |
| q2: torch.Tensor = quaternion[..., 2] | |
| q3: torch.Tensor = quaternion[..., 3] | |
| sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3 | |
| sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta) | |
| cos_theta: torch.Tensor = quaternion[..., 0] | |
| two_theta: torch.Tensor = 2.0 * torch.where( | |
| cos_theta < 0.0, torch.atan2(-sin_theta, -cos_theta), | |
| torch.atan2(sin_theta, cos_theta)) | |
| k_pos: torch.Tensor = two_theta / sin_theta | |
| k_neg: torch.Tensor = 2.0 * \ | |
| torch.ones_like(sin_theta).to(quaternion.device) | |
| k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg) | |
| angle_axis: torch.Tensor = torch.zeros_like(quaternion).to( | |
| quaternion.device)[..., :3] | |
| angle_axis[..., 0] += q1 * k | |
| angle_axis[..., 1] += q2 * k | |
| angle_axis[..., 2] += q3 * k | |
| return angle_axis | |
| # credit to Muhammed Kocabas | |
| # matrix to euler angle | |
| # Device = Union[str, torch.device] | |
| _AXIS_TO_IND = {'x': 0, 'y': 1, 'z': 2} | |
| def _elementary_basis_vector(axis): | |
| b = torch.zeros(3) | |
| b[_AXIS_TO_IND[axis]] = 1 | |
| return b | |
| def _compute_euler_from_matrix(dcm, seq='xyz', extrinsic=False): | |
| # The algorithm assumes intrinsic frame transformations. For representation | |
| # the paper uses transformation matrices, which are transpose of the | |
| # direction cosine matrices used by our Rotation class. | |
| # Adapt the algorithm for our case by | |
| # 1. Instead of transposing our representation, use the transpose of the | |
| # O matrix as defined in the paper, and be careful to swap indices | |
| # 2. Reversing both axis sequence and angles for extrinsic rotations | |
| orig_device = dcm.device | |
| dcm = dcm.to('cpu') | |
| seq = seq.lower() | |
| if extrinsic: | |
| seq = seq[::-1] | |
| if dcm.ndim == 2: | |
| dcm = dcm[None, :, :] | |
| num_rotations = dcm.shape[0] | |
| device = dcm.device | |
| # Step 0 | |
| # Algorithm assumes axes as column vectors, here we use 1D vectors | |
| n1 = _elementary_basis_vector(seq[0]) | |
| n2 = _elementary_basis_vector(seq[1]) | |
| n3 = _elementary_basis_vector(seq[2]) | |
| # Step 2 | |
| sl = torch.dot(torch.cross(n1, n2), n3) | |
| cl = torch.dot(n1, n3) | |
| # angle offset is lambda from the paper referenced in [2] from docstring of | |
| # `as_euler` function | |
| offset = torch.atan2(sl, cl) | |
| c = torch.stack((n2, torch.cross(n1, n2), n1)).type(dcm.dtype).to(device) | |
| # Step 3 | |
| rot = torch.tensor([ | |
| [1, 0, 0], | |
| [0, cl, sl], | |
| [0, -sl, cl], | |
| ]).type(dcm.dtype) | |
| # import IPython; IPython.embed(); exit | |
| res = torch.einsum('ij,...jk->...ik', c, dcm) | |
| dcm_transformed = torch.einsum('...ij,jk->...ik', res, c.T @ rot) | |
| # Step 4 | |
| angles = torch.zeros((num_rotations, 3), dtype=dcm.dtype, device=device) | |
| # Ensure less than unit norm | |
| positive_unity = dcm_transformed[:, 2, 2] > 1 | |
| negative_unity = dcm_transformed[:, 2, 2] < -1 | |
| dcm_transformed[positive_unity, 2, 2] = 1 | |
| dcm_transformed[negative_unity, 2, 2] = -1 | |
| angles[:, 1] = torch.acos(dcm_transformed[:, 2, 2]) | |
| # Steps 5, 6 | |
| eps = 1e-7 | |
| safe1 = (torch.abs(angles[:, 1]) >= eps) | |
| safe2 = (torch.abs(angles[:, 1] - np.pi) >= eps) | |
| # Step 4 (Completion) | |
| angles[:, 1] += offset | |
| # 5b | |
| safe_mask = torch.logical_and(safe1, safe2) | |
| angles[safe_mask, 0] = torch.atan2(dcm_transformed[safe_mask, 0, 2], | |
| -dcm_transformed[safe_mask, 1, 2]) | |
| angles[safe_mask, 2] = torch.atan2(dcm_transformed[safe_mask, 2, 0], | |
| dcm_transformed[safe_mask, 2, 1]) | |
| if extrinsic: | |
| # For extrinsic, set first angle to zero so that after reversal we | |
| # ensure that third angle is zero | |
| # 6a | |
| angles[~safe_mask, 0] = 0 | |
| # 6b | |
| angles[~safe1, 2] = torch.atan2( | |
| dcm_transformed[~safe1, 1, 0] - dcm_transformed[~safe1, 0, 1], | |
| dcm_transformed[~safe1, 0, 0] + dcm_transformed[~safe1, 1, 1]) | |
| # 6c | |
| angles[~safe2, 2] = -torch.atan2( | |
| dcm_transformed[~safe2, 1, 0] + dcm_transformed[~safe2, 0, 1], | |
| dcm_transformed[~safe2, 0, 0] - dcm_transformed[~safe2, 1, 1]) | |
| else: | |
| # For instrinsic, set third angle to zero | |
| # 6a | |
| angles[~safe_mask, 2] = 0 | |
| # 6b | |
| angles[~safe1, 0] = torch.atan2( | |
| dcm_transformed[~safe1, 1, 0] - dcm_transformed[~safe1, 0, 1], | |
| dcm_transformed[~safe1, 0, 0] + dcm_transformed[~safe1, 1, 1]) | |
| # 6c | |
| angles[~safe2, 0] = torch.atan2( | |
| dcm_transformed[~safe2, 1, 0] + dcm_transformed[~safe2, 0, 1], | |
| dcm_transformed[~safe2, 0, 0] - dcm_transformed[~safe2, 1, 1]) | |
| # Step 7 | |
| if seq[0] == seq[2]: | |
| # lambda = 0, so we can only ensure angle2 -> [0, pi] | |
| adjust_mask = torch.logical_or(angles[:, 1] < 0, angles[:, 1] > np.pi) | |
| else: | |
| # lambda = + or - pi/2, so we can ensure angle2 -> [-pi/2, pi/2] | |
| adjust_mask = torch.logical_or(angles[:, 1] < -np.pi / 2, | |
| angles[:, 1] > np.pi / 2) | |
| # Dont adjust gimbal locked angle sequences | |
| adjust_mask = torch.logical_and(adjust_mask, safe_mask) | |
| angles[adjust_mask, 0] += np.pi | |
| angles[adjust_mask, 1] = 2 * offset - angles[adjust_mask, 1] | |
| angles[adjust_mask, 2] -= np.pi | |
| angles[angles < -np.pi] += 2 * np.pi | |
| angles[angles > np.pi] -= 2 * np.pi | |
| # Step 8 | |
| if not torch.all(safe_mask): | |
| print("Gimbal lock detected. Setting third angle to zero since" | |
| "it is not possible to uniquely determine all angles.") | |
| # Reverse role of extrinsic and intrinsic rotations, but let third angle be | |
| # zero for gimbal locked cases | |
| if extrinsic: | |
| # angles = angles[:, ::-1] | |
| angles = torch.flip(angles, dims=[ | |
| -1, | |
| ]) | |
| angles = angles.to(orig_device) | |
| return angles | |
| # batch converter | |
| def batch_euler2axis(r): | |
| return quaternion_to_angle_axis(euler_to_quaternion(r)) | |
| def batch_euler2matrix(r): | |
| return quaternion_to_rotation_matrix(euler_to_quaternion(r)) | |
| def batch_matrix2euler(rot_mats): | |
| # Calculates rotation matrix to euler angles | |
| # Careful for extreme cases of eular angles like [0.0, pi, 0.0] | |
| # only y biw | |
| # TODO: add x, z | |
| sy = torch.sqrt(rot_mats[:, 0, 0] * rot_mats[:, 0, 0] + | |
| rot_mats[:, 1, 0] * rot_mats[:, 1, 0]) | |
| return torch.atan2(-rot_mats[:, 2, 0], sy) | |
| def batch_matrix2axis(rot_mats): | |
| return quaternion_to_angle_axis(rotation_matrix_to_quaternion(rot_mats)) | |
| def batch_axis2matrix(theta): | |
| # angle axis to rotation matrix | |
| # theta N x 3 | |
| # return quat2mat(quat) | |
| # batch_rodrigues | |
| return quaternion_to_rotation_matrix(angle_axis_to_quaternion(theta)) | |
| def batch_axis2euler(theta): | |
| return batch_matrix2euler(batch_axis2matrix(theta)) | |
| def batch_axis2euler(r): | |
| return rot_mat_to_euler(batch_rodrigues(r)) | |
| def batch_rodrigues(rot_vecs, epsilon=1e-8, dtype=torch.float32): | |
| ''' same as batch_matrix2axis | |
| Calculates the rotation matrices for a batch of rotation vectors | |
| Parameters | |
| ---------- | |
| rot_vecs: torch.tensor Nx3 | |
| array of N axis-angle vectors | |
| Returns | |
| ------- | |
| R: torch.tensor Nx3x3 | |
| The rotation matrices for the given axis-angle parameters | |
| Code from smplx/flame, what PS people often use | |
| ''' | |
| batch_size = rot_vecs.shape[0] | |
| device = rot_vecs.device | |
| angle = torch.norm(rot_vecs + 1e-8, dim=1, keepdim=True) | |
| rot_dir = rot_vecs / angle | |
| cos = torch.unsqueeze(torch.cos(angle), dim=1) | |
| sin = torch.unsqueeze(torch.sin(angle), dim=1) | |
| # Bx1 arrays | |
| rx, ry, rz = torch.split(rot_dir, 1, dim=1) | |
| K = torch.zeros((batch_size, 3, 3), dtype=dtype, device=device) | |
| zeros = torch.zeros((batch_size, 1), dtype=dtype, device=device) | |
| K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \ | |
| .view((batch_size, 3, 3)) | |
| ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0) | |
| rot_mat = ident + sin * K + (1 - cos) * torch.bmm(K, K) | |
| return rot_mat | |
| def batch_cont2matrix(module_input): | |
| ''' Decoder for transforming a latent representation to rotation matrices | |
| Implements the decoding method described in: | |
| "On the Continuity of Rotation Representations in Neural Networks" | |
| Code from https://github.com/vchoutas/expose | |
| ''' | |
| batch_size = module_input.shape[0] | |
| reshaped_input = module_input.reshape(-1, 3, 2) | |
| # Normalize the first vector | |
| b1 = F.normalize(reshaped_input[:, :, 0].clone(), dim=1) | |
| dot_prod = torch.sum(b1 * reshaped_input[:, :, 1].clone(), | |
| dim=1, | |
| keepdim=True) | |
| # Compute the second vector by finding the orthogonal complement to it | |
| b2 = F.normalize(reshaped_input[:, :, 1] - dot_prod * b1, dim=1) | |
| # Finish building the basis by taking the cross product | |
| b3 = torch.cross(b1, b2, dim=1) | |
| rot_mats = torch.stack([b1, b2, b3], dim=-1) | |
| return rot_mats.view(batch_size, -1, 3, 3) | |