Spaces:
Running
on
Zero
Running
on
Zero
| import logging | |
| import warnings | |
| from typing import Callable, List, Optional, Union, Dict, Any | |
| import PIL | |
| import torch | |
| import torch.nn.functional as F | |
| import torchvision.transforms.functional as TF | |
| from packaging import version | |
| from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, CLIPFeatureExtractor, CLIPTokenizer, CLIPTextModel | |
| from diffusers.utils.import_utils import is_accelerate_available | |
| from diffusers.configuration_utils import FrozenDict | |
| from diffusers.image_processor import VaeImageProcessor | |
| from diffusers.models import AutoencoderKL, UNet2DConditionModel | |
| from diffusers.models.embeddings import get_timestep_embedding | |
| from diffusers.schedulers import KarrasDiffusionSchedulers, PNDMScheduler, DDIMScheduler, DDPMScheduler | |
| from diffusers.utils import deprecate | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer | |
| from accelerate.utils import ProjectConfiguration, set_seed | |
| from diffusers.optimization import get_scheduler | |
| from diffusers.training_utils import EMAModel | |
| from diffusers.utils import check_min_version, deprecate, is_wandb_available | |
| from diffusers.utils.import_utils import is_xformers_available | |
| import transformers | |
| import diffusers | |
| import accelerate | |
| from accelerate import Accelerator | |
| from torchvision.transforms import InterpolationMode | |
| import argparse | |
| from omegaconf import OmegaConf | |
| from mvdiffusion.models_unclip.unet_mv2d_condition import UNetMV2DConditionModel | |
| # from mvdiffusion.data.objaverse_dataset_unclip_xxdata import ObjaverseDataset as MVDiffusionDataset | |
| from mvdiffusion.data.dreamdata import ObjaverseDataset as MVDiffusionDataset | |
| from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution | |
| from accelerate.logging import get_logger | |
| import os | |
| import numpy as np | |
| from PIL import Image | |
| import math | |
| from tqdm import tqdm | |
| from einops import rearrange, repeat | |
| from torchvision.transforms import InterpolationMode | |
| from einops import rearrange, repeat | |
| from diffusers.schedulers import PNDMScheduler | |
| from collections import defaultdict | |
| from torchvision.utils import make_grid, save_image | |
| from mvdiffusion.pipelines.pipeline_mvdiffusion_unclip import StableUnCLIPImg2ImgPipeline | |
| from dataclasses import dataclass | |
| import json | |
| import shutil | |
| from mvdiffusion.models_unclip.face_networks import prepare_face_proj_model | |
| logger = get_logger(__name__, log_level="INFO") | |
| class TrainingConfig: | |
| pretrained_model_name_or_path: str | |
| pretrained_unet_path: Optional[str] | |
| clip_path: str | |
| revision: Optional[str] | |
| data_common: Optional[dict] | |
| train_dataset: Dict | |
| validation_dataset: Dict | |
| validation_train_dataset: Dict | |
| output_dir: str | |
| checkpoint_prefix: str | |
| seed: Optional[int] | |
| train_batch_size: int | |
| validation_batch_size: int | |
| validation_train_batch_size: int | |
| max_train_steps: int | |
| gradient_accumulation_steps: int | |
| gradient_checkpointing: bool | |
| learning_rate: float | |
| scale_lr: bool | |
| lr_scheduler: str | |
| step_rules: Optional[str] | |
| lr_warmup_steps: int | |
| snr_gamma: Optional[float] | |
| use_8bit_adam: bool | |
| allow_tf32: bool | |
| use_ema: bool | |
| dataloader_num_workers: int | |
| adam_beta1: float | |
| adam_beta2: float | |
| adam_weight_decay: float | |
| adam_epsilon: float | |
| max_grad_norm: Optional[float] | |
| prediction_type: Optional[str] | |
| logging_dir: str | |
| vis_dir: str | |
| mixed_precision: Optional[str] | |
| report_to: Optional[str] | |
| local_rank: int | |
| checkpointing_steps: int | |
| checkpoints_total_limit: Optional[int] | |
| resume_from_checkpoint: Optional[str] | |
| enable_xformers_memory_efficient_attention: bool | |
| validation_steps: int | |
| validation_sanity_check: bool | |
| tracker_project_name: str | |
| trainable_modules: Optional[list] | |
| use_classifier_free_guidance: bool | |
| condition_drop_rate: float | |
| scale_input_latents: bool | |
| regress_elevation: bool | |
| regress_focal_length: bool | |
| elevation_loss_weight: float | |
| focal_loss_weight: float | |
| pipe_kwargs: Dict | |
| pipe_validation_kwargs: Dict | |
| unet_from_pretrained_kwargs: Dict | |
| validation_guidance_scales: List[float] | |
| validation_grid_nrow: int | |
| camera_embedding_lr_mult: float | |
| plot_pose_acc: bool | |
| num_views: int | |
| data_view_num: Optional[int] | |
| pred_type: str | |
| drop_type: str | |
| with_smpl: Optional[bool] | |
| def convert_image( | |
| tensor, | |
| fp, | |
| format: Optional[str] = None, | |
| **kwargs, | |
| ) -> None: | |
| """ | |
| Save a given Tensor into an image file. | |
| Args: | |
| tensor (Tensor or list): Image to be saved. If given a mini-batch tensor, | |
| saves the tensor as a grid of images by calling ``make_grid``. | |
| fp (string or file object): A filename or a file object | |
| format(Optional): If omitted, the format to use is determined from the filename extension. | |
| If a file object was used instead of a filename, this parameter should always be used. | |
| **kwargs: Other arguments are documented in ``make_grid``. | |
| """ | |
| grid = make_grid(tensor, **kwargs) | |
| # Add 0.5 after unnormalizing to [0, 255] to round to the nearest integer | |
| ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy() | |
| im = Image.fromarray(ndarr) | |
| im.save(fp, format=format) | |
| def log_validation_joint(dataloader, vae, feature_extractor, image_encoder, image_normlizer, image_noising_scheduler, tokenizer, text_encoder, | |
| unet, face_proj_model, cfg:TrainingConfig, accelerator, weight_dtype, global_step, name, save_dir): | |
| pipeline = StableUnCLIPImg2ImgPipeline( | |
| image_encoder=image_encoder, feature_extractor=feature_extractor, image_normalizer=image_normlizer, | |
| image_noising_scheduler=image_noising_scheduler, tokenizer=tokenizer, text_encoder=text_encoder, | |
| vae=vae, unet=accelerator.unwrap_model(unet), | |
| scheduler=DDIMScheduler.from_pretrained_linear(cfg.pretrained_model_name_or_path, subfolder="scheduler"), | |
| **cfg.pipe_kwargs | |
| ) | |
| pipeline.set_progress_bar_config(disable=True) | |
| if cfg.seed is None: | |
| generator = None | |
| else: | |
| generator = torch.Generator(device=unet.device).manual_seed(cfg.seed) | |
| images_cond, pred_cat = [], defaultdict(list) | |
| for i, batch in tqdm(enumerate(dataloader)): | |
| images_cond.append(batch['imgs_in'][:, 0]) | |
| if face_proj_model is not None: | |
| face_embeds = batch['face_embed'] | |
| face_embeds = torch.cat([face_embeds]*2, dim=0) | |
| face_embeds = rearrange(face_embeds, "B Nv L C -> (B Nv) L C") | |
| face_embeds = face_embeds.to(device=accelerator.device, dtype=weight_dtype) | |
| face_embeds = face_proj_model(face_embeds) | |
| else: | |
| face_embeds = None | |
| # if dino_encoder: | |
| # dino_input = TF.resize(batch['imgs_in'][:, 0], (224, 224)).float().to(accelerator.device) | |
| # dino_feature = dino_encoder(dino_input) | |
| # dino_feature = repeat(dino_feature, "B N C -> (B V) N C", V=cfg.num_views*2) | |
| # else: | |
| # dino_feature = None | |
| imgs_in = torch.cat([batch['imgs_in']]*2, dim=0) | |
| num_views = imgs_in.shape[1] | |
| imgs_in = rearrange(imgs_in, "B Nv C H W -> (B Nv) C H W")# (B*Nv, 3, H, W) | |
| if cfg.with_smpl: | |
| smpl_in = torch.cat([batch['smpl_imgs_in']]*2, dim=0) | |
| smpl_in = rearrange(smpl_in, "B Nv C H W -> (B Nv) C H W") | |
| else: | |
| smpl_in = None | |
| normal_prompt_embeddings, clr_prompt_embeddings = batch['normal_prompt_embeddings'], batch['color_prompt_embeddings'] | |
| prompt_embeddings = torch.cat([normal_prompt_embeddings, clr_prompt_embeddings], dim=0) | |
| prompt_embeddings = rearrange(prompt_embeddings, "B Nv N C -> (B Nv) N C") | |
| with torch.autocast("cuda"): | |
| # B*Nv images | |
| for guidance_scale in cfg.validation_guidance_scales: | |
| out = pipeline( | |
| imgs_in, None, prompt_embeds=prompt_embeddings, | |
| dino_feature=face_embeds, smpl_in=smpl_in, | |
| generator=generator, guidance_scale=guidance_scale, output_type='pt', num_images_per_prompt=1, **cfg.pipe_validation_kwargs | |
| ).images | |
| bsz = out.shape[0] // 2 | |
| normals_pred = out[:bsz] | |
| images_pred = out[bsz:] | |
| # print(normals_pred.shape, images_pred.shape) | |
| pred_cat[f"cfg{guidance_scale:.1f}"].append(torch.cat([normals_pred, images_pred], dim=-1)) # b, 3, h, w | |
| # from icecream import ic | |
| images_cond_all = torch.cat(images_cond, dim=0) | |
| images_pred_all = {} | |
| for k, v in pred_cat.items(): | |
| images_pred_all[k] = torch.cat(v, dim=0).cpu() | |
| # print(images_pred_all[k].shape) | |
| # import pdb;pdb.set_trace() | |
| nrow = cfg.validation_grid_nrow | |
| # ncol = images_cond_all.shape[0] // nrow | |
| images_cond_grid = make_grid(images_cond_all, nrow=1, padding=0, value_range=(0, 1)) | |
| edge_pad = torch.zeros(list(images_cond_grid.shape[:2]) + [3], dtype=torch.float32) | |
| images_vis = torch.cat([images_cond_grid, edge_pad], -1) | |
| for k, v in images_pred_all.items(): | |
| images_vis = torch.cat([images_vis, make_grid(v, nrow=nrow, padding=0, value_range=(0, 1)), edge_pad], -1) | |
| save_image(images_vis, os.path.join(save_dir, f"{name}-{global_step}.jpg")) | |
| torch.cuda.empty_cache() | |
| def log_validation(dataloader, vae, feature_extractor, image_encoder, image_normlizer, image_noising_scheduler, tokenizer, text_encoder, | |
| unet, face_proj_model, cfg:TrainingConfig, accelerator, weight_dtype, global_step, name, save_dir): | |
| logger.info(f"Running {name} ... ") | |
| pipeline = StableUnCLIPImg2ImgPipeline( | |
| image_encoder=image_encoder, feature_extractor=feature_extractor, image_normalizer=image_normlizer, | |
| image_noising_scheduler=image_noising_scheduler, tokenizer=tokenizer, text_encoder=text_encoder, | |
| vae=vae, unet=accelerator.unwrap_model(unet), | |
| scheduler=DDIMScheduler.from_pretrained_linear(cfg.pretrained_model_name_or_path, subfolder="scheduler"), | |
| **cfg.pipe_kwargs | |
| ) | |
| pipeline.set_progress_bar_config(disable=True) | |
| if cfg.enable_xformers_memory_efficient_attention: | |
| pipeline.enable_xformers_memory_efficient_attention() | |
| if cfg.seed is None: | |
| generator = None | |
| else: | |
| generator = torch.Generator(device=accelerator.device).manual_seed(cfg.seed) | |
| images_cond, images_gt, images_pred = [], [], defaultdict(list) | |
| for i, batch in enumerate(dataloader): | |
| # (B, Nv, 3, H, W) | |
| imgs_in, colors_out, normals_out = batch['imgs_in'], batch['imgs_out'], batch['normals_out'] | |
| images_cond.append(imgs_in[:, 0, :, :, :]) | |
| # repeat (2B, Nv, 3, H, W) | |
| imgs_in = torch.cat([imgs_in]*2, dim=0) | |
| imgs_out = torch.cat([normals_out, colors_out], dim=0) | |
| imgs_in, imgs_out = rearrange(imgs_in, "B Nv C H W -> (B Nv) C H W"), rearrange(imgs_out, "B Nv C H W -> (B Nv) C H W") | |
| images_gt.append(imgs_out) | |
| if cfg.with_smpl: | |
| smpl_in = torch.cat([batch['smpl_imgs_in']]*2, dim=0) | |
| smpl_in = rearrange(smpl_in, "B Nv C H W -> (B Nv) C H W") | |
| else: | |
| smpl_in = None | |
| prompt_embeddings = torch.cat([batch['normal_prompt_embeddings'], batch['color_prompt_embeddings']], dim=0) | |
| # (B*Nv, N, C) | |
| prompt_embeds = rearrange(prompt_embeddings, "B Nv N C -> (B Nv) N C") | |
| prompt_embeds = prompt_embeds.to(weight_dtype) | |
| if face_proj_model is not None: | |
| face_embeds = batch['face_embed'] | |
| face_embeds = torch.cat([face_embeds]*2, dim=0) | |
| face_embeds = rearrange(face_embeds, "B Nv L C -> (B Nv) L C") | |
| face_embeds = face_embeds.to(device=accelerator.device, dtype=weight_dtype) | |
| face_embeds = face_proj_model(face_embeds) | |
| else: | |
| face_embeds = None | |
| with torch.autocast("cuda"): | |
| # B*Nv images | |
| for guidance_scale in cfg.validation_guidance_scales: | |
| out = pipeline( | |
| imgs_in, None, prompt_embeds=prompt_embeds, smpl_in=smpl_in, dino_feature=face_embeds, generator=generator, guidance_scale=guidance_scale, output_type='pt', num_images_per_prompt=1, **cfg.pipe_validation_kwargs | |
| ).images | |
| shape = out.shape | |
| out0, out1 = out[:shape[0]//2], out[shape[0]//2:] | |
| out = [] | |
| for ii in range(shape[0]//2): | |
| out.append(out0[ii]) | |
| out.append(out1[ii]) | |
| out = torch.stack(out, dim=0) | |
| images_pred[f"{name}-sample_cfg{guidance_scale:.1f}"].append(out) | |
| images_cond_all = torch.cat(images_cond, dim=0) | |
| images_gt_all = torch.cat(images_gt, dim=0) | |
| images_pred_all = {} | |
| for k, v in images_pred.items(): | |
| images_pred_all[k] = torch.cat(v, dim=0).cpu() | |
| nrow = cfg.validation_grid_nrow * 2 | |
| images_cond_grid = make_grid(images_cond_all, nrow=1, padding=0, value_range=(0, 1)) | |
| images_gt_grid = make_grid(images_gt_all, nrow=nrow, padding=0, value_range=(0, 1)) | |
| edge_pad = torch.zeros(list(images_cond_grid.shape[:2]) + [3], dtype=torch.float32) | |
| images_vis = torch.cat([images_cond_grid.cpu(), edge_pad], -1) | |
| for k, v in images_pred_all.items(): | |
| images_vis = torch.cat([images_vis, make_grid(v, nrow=nrow, padding=0, value_range=(0, 1)), edge_pad], -1) | |
| # images_pred_grid = {} | |
| # for k, v in images_pred_all.items(): | |
| # images_pred_grid[k] = make_grid(v, nrow=nrow, padding=0, value_range=(0, 1)) | |
| save_image(images_vis, os.path.join(save_dir, f"{global_step}-{name}-cond.jpg")) | |
| save_image(images_gt_grid, os.path.join(save_dir, f"{global_step}-{name}-gt.jpg")) | |
| torch.cuda.empty_cache() | |
| def noise_image_embeddings( | |
| image_embeds: torch.Tensor, | |
| noise_level: int, | |
| noise: Optional[torch.FloatTensor] = None, | |
| generator: Optional[torch.Generator] = None, | |
| image_normalizer: Optional[StableUnCLIPImageNormalizer] = None, | |
| image_noising_scheduler: Optional[DDPMScheduler] = None, | |
| ): | |
| """ | |
| Add noise to the image embeddings. The amount of noise is controlled by a `noise_level` input. A higher | |
| `noise_level` increases the variance in the final un-noised images. | |
| The noise is applied in two ways | |
| 1. A noise schedule is applied directly to the embeddings | |
| 2. A vector of sinusoidal time embeddings are appended to the output. | |
| In both cases, the amount of noise is controlled by the same `noise_level`. | |
| The embeddings are normalized before the noise is applied and un-normalized after the noise is applied. | |
| """ | |
| if noise is None: | |
| noise = randn_tensor( | |
| image_embeds.shape, generator=generator, device=image_embeds.device, dtype=image_embeds.dtype | |
| ) | |
| noise_level = torch.tensor([noise_level] * image_embeds.shape[0], device=image_embeds.device) | |
| image_embeds = image_normalizer.scale(image_embeds) | |
| image_embeds = image_noising_scheduler.add_noise(image_embeds, timesteps=noise_level, noise=noise) | |
| image_embeds = image_normalizer.unscale(image_embeds) | |
| noise_level = get_timestep_embedding( | |
| timesteps=noise_level, embedding_dim=image_embeds.shape[-1], flip_sin_to_cos=True, downscale_freq_shift=0 | |
| ) | |
| # `get_timestep_embeddings` does not contain any weights and will always return f32 tensors, | |
| # but we might actually be running in fp16. so we need to cast here. | |
| # there might be better ways to encapsulate this. | |
| noise_level = noise_level.to(image_embeds.dtype) | |
| image_embeds = torch.cat((image_embeds, noise_level), 1) | |
| return image_embeds | |
| def main(cfg: TrainingConfig): | |
| # -------------------------------------------prepare custom log and accelaeator -------------------------------- | |
| # override local_rank with envvar | |
| env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
| if env_local_rank not in [-1, cfg.local_rank]: | |
| cfg.local_rank = env_local_rank | |
| logging_dir = os.path.join(cfg.output_dir, cfg.logging_dir) | |
| model_dir = os.path.join(cfg.checkpoint_prefix, cfg.output_dir) | |
| vis_dir = os.path.join(cfg.output_dir, cfg.vis_dir) | |
| accelerator_project_config = ProjectConfiguration(project_dir=cfg.output_dir, logging_dir=logging_dir) | |
| # print(os.getenv("SLURM_PROCID"), os.getenv("SLURM_LOCALID"), os.getenv("SLURM_NODEID"), os.getenv('GLOBAL_RANK'), os.getenv('LOCAL_RANK'), os.getenv('RNAK'), os.getenv('MASTER_ADDR')) | |
| # exit() | |
| accelerator = Accelerator( | |
| gradient_accumulation_steps=cfg.gradient_accumulation_steps, | |
| mixed_precision=cfg.mixed_precision, | |
| log_with=cfg.report_to, | |
| project_config=accelerator_project_config, | |
| ) | |
| # Make one log on every process with the configuration for debugging. | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.INFO, | |
| ) | |
| logger.info(accelerator.state, main_process_only=False) | |
| if accelerator.is_local_main_process: | |
| transformers.utils.logging.set_verbosity_warning() | |
| diffusers.utils.logging.set_verbosity_info() | |
| else: | |
| transformers.utils.logging.set_verbosity_error() | |
| diffusers.utils.logging.set_verbosity_error() | |
| # If passed along, set the training seed now. | |
| if cfg.seed is not None: | |
| set_seed(cfg.seed) | |
| # Handle the repository creation | |
| if accelerator.is_main_process: | |
| os.makedirs(model_dir, exist_ok=True) | |
| os.makedirs(cfg.output_dir, exist_ok=True) | |
| os.makedirs(vis_dir, exist_ok=True) | |
| OmegaConf.save(cfg, os.path.join(cfg.output_dir, 'config.yaml')) | |
| ## -------------------------------------- load models -------------------------------- | |
| image_encoder = CLIPVisionModelWithProjection.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="image_encoder", revision=cfg.revision) | |
| feature_extractor = CLIPImageProcessor.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="feature_extractor", revision=cfg.revision) | |
| image_noising_scheduler = DDPMScheduler.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="image_noising_scheduler") | |
| image_normlizer = StableUnCLIPImageNormalizer.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="image_normalizer") | |
| tokenizer = CLIPTokenizer.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="tokenizer", revision=cfg.revision) | |
| text_encoder = CLIPTextModel.from_pretrained(cfg.pretrained_model_name_or_path, subfolder='text_encoder', revision=cfg.revision) | |
| # note: official code use PNDMScheduler | |
| noise_scheduler = DDPMScheduler.from_pretrained_linear(cfg.pretrained_model_name_or_path, subfolder="scheduler") | |
| vae = AutoencoderKL.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="vae", revision=cfg.revision) | |
| if cfg.pretrained_unet_path is None: | |
| unet = UNetMV2DConditionModel.from_pretrained_2d(cfg.pretrained_model_name_or_path, subfolder="unet", revision=cfg.revision, **cfg.unet_from_pretrained_kwargs) | |
| else: | |
| logger.info(f'laod pretrained model from {cfg.pretrained_unet_path}') | |
| unet = UNetMV2DConditionModel.from_pretrained_2d(cfg.pretrained_unet_path, subfolder="unet", revision=cfg.revision, **cfg.unet_from_pretrained_kwargs) | |
| # unet = UNet2DConditionModel.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="unet", revision=cfg.revision) | |
| if cfg.unet_from_pretrained_kwargs.use_dino: | |
| from models.dinov2_wrapper import Dinov2Wrapper | |
| dino_encoder = Dinov2Wrapper(model_name='dinov2_vitb14', freeze=True) | |
| else: | |
| dino_encoder = None | |
| # TODO: extract face projection model weights | |
| if cfg.unet_from_pretrained_kwargs.use_face_adapter: | |
| face_proj_model = prepare_face_proj_model('models/image_proj_model.pth', cross_attention_dim=1024, pretrain=False) | |
| else: | |
| face_proj_model = None | |
| if cfg.use_ema: | |
| ema_unet = EMAModel(unet.parameters(), model_cls=UNetMV2DConditionModel, model_config=unet.config) | |
| # ema_unet = EMAModel(unet.parameters(), model_cls=UNet2DConditionModel, model_config=unet.config) | |
| def compute_snr(timesteps): | |
| """ | |
| Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849 | |
| """ | |
| alphas_cumprod = noise_scheduler.alphas_cumprod | |
| sqrt_alphas_cumprod = alphas_cumprod**0.5 | |
| sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5 | |
| # Expand the tensors. | |
| # Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026 | |
| sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float() | |
| while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape): | |
| sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None] | |
| alpha = sqrt_alphas_cumprod.expand(timesteps.shape) | |
| sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float() | |
| while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape): | |
| sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None] | |
| sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape) | |
| # Compute SNR. | |
| snr = (alpha / sigma) ** 2 | |
| return snr | |
| # Freeze vae, image_encoder, text_encoder | |
| vae.requires_grad_(False) | |
| image_encoder.requires_grad_(False) | |
| image_normlizer.requires_grad_(False) | |
| text_encoder.requires_grad_(False) | |
| if face_proj_model is not None: face_proj_model.requires_grad_(True) | |
| if cfg.trainable_modules is None: | |
| unet.requires_grad_(True) | |
| else: | |
| unet.requires_grad_(False) | |
| for name, module in unet.named_modules(): | |
| if name.endswith(tuple(cfg.trainable_modules)): | |
| for params in module.parameters(): | |
| params.requires_grad = True | |
| if cfg.enable_xformers_memory_efficient_attention: | |
| if is_xformers_available(): | |
| import xformers | |
| xformers_version = version.parse(xformers.__version__) | |
| if xformers_version == version.parse("0.0.16"): | |
| logger.warn( | |
| "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." | |
| ) | |
| unet.enable_xformers_memory_efficient_attention() | |
| print("use xformers to speed up") | |
| else: | |
| raise ValueError("xformers is not available. Make sure it is installed correctly") | |
| # `accelerate` 0.16.0 will have better support for customized saving | |
| if version.parse(accelerate.__version__) >= version.parse("0.16.0"): | |
| # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format | |
| def save_model_hook(models, weights, output_dir): | |
| if cfg.use_ema: | |
| ema_unet.save_pretrained(os.path.join(cfg.checkpoint_prefix, output_dir, "unet_ema")) | |
| for i, model in enumerate(models): | |
| model.save_pretrained(os.path.join(cfg.checkpoint_prefix, output_dir, "unet")) | |
| # make sure to pop weight so that corresponding model is not saved again | |
| weights.pop() | |
| def load_model_hook(models, input_dir): | |
| if cfg.use_ema: | |
| load_model = EMAModel.from_pretrained(os.path.join(cfg.checkpoint_prefix, input_dir, "unet_ema"), UNetMV2DConditionModel) | |
| ema_unet.load_state_dict(load_model.state_dict()) | |
| ema_unet.to(accelerator.device) | |
| del load_model | |
| for i in range(len(models)): | |
| # pop models so that they are not loaded again | |
| model = models.pop() | |
| # load diffusers style into model | |
| load_model = UNetMV2DConditionModel.from_pretrained(os.path.join(cfg.checkpoint_prefix, input_dir), subfolder="unet") | |
| model.register_to_config(**load_model.config) | |
| model.load_state_dict(load_model.state_dict()) | |
| del load_model | |
| accelerator.register_save_state_pre_hook(save_model_hook) | |
| accelerator.register_load_state_pre_hook(load_model_hook) | |
| if cfg.gradient_checkpointing: | |
| unet.enable_gradient_checkpointing() | |
| # Enable TF32 for faster training on Ampere GPUs, | |
| # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices | |
| if cfg.allow_tf32: | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| # -------------------------------------- optimizer and lr -------------------------------- | |
| if cfg.scale_lr: | |
| cfg.learning_rate = ( | |
| cfg.learning_rate * cfg.gradient_accumulation_steps * cfg.train_batch_size * accelerator.num_processes | |
| ) | |
| # Initialize the optimizer | |
| if cfg.use_8bit_adam: | |
| try: | |
| import bitsandbytes as bnb | |
| except ImportError: | |
| raise ImportError( | |
| "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" | |
| ) | |
| optimizer_cls = bnb.optim.AdamW8bit | |
| else: | |
| optimizer_cls = torch.optim.AdamW | |
| params, params_class_embedding, params_rowwise_layers = [], [], [] | |
| for name, param in unet.named_parameters(): | |
| if ('class_embedding' in name) or ('camera_embedding' in name): | |
| params_class_embedding.append(param) | |
| elif ('attn_mv' in name) or ('norm_mv' in name): | |
| # print('Find mv attn block') | |
| params_rowwise_layers.append(param) | |
| else: | |
| params.append(param) | |
| opti_params = [{"params": params, "lr": cfg.learning_rate}] | |
| if len(params_class_embedding) > 0: | |
| opti_params.append({"params": params_class_embedding, "lr": cfg.learning_rate * cfg.camera_embedding_lr_mult}) | |
| if len(params_rowwise_layers) > 0: | |
| opti_params.append({"params": params_rowwise_layers, "lr": cfg.learning_rate * cfg.camera_embedding_lr_mult}) | |
| optimizer = optimizer_cls( | |
| opti_params, | |
| betas=(cfg.adam_beta1, cfg.adam_beta2), | |
| weight_decay=cfg.adam_weight_decay, | |
| eps=cfg.adam_epsilon, | |
| ) | |
| lr_scheduler = get_scheduler( | |
| cfg.lr_scheduler, | |
| step_rules=cfg.step_rules, | |
| optimizer=optimizer, | |
| num_warmup_steps=cfg.lr_warmup_steps * accelerator.num_processes, | |
| num_training_steps=cfg.max_train_steps * accelerator.num_processes, | |
| ) | |
| # -------------------------------------- load dataset -------------------------------- | |
| # Get the training dataset | |
| train_dataset = MVDiffusionDataset( | |
| **cfg.train_dataset | |
| ) | |
| if cfg.with_smpl: | |
| from mvdiffusion.data.testdata_with_smpl import SingleImageDataset | |
| else: | |
| from mvdiffusion.data.single_image_dataset import SingleImageDataset | |
| validation_dataset = SingleImageDataset( | |
| **cfg.validation_dataset | |
| ) | |
| validation_train_dataset = MVDiffusionDataset( | |
| **cfg.validation_train_dataset | |
| ) | |
| # DataLoaders creation: | |
| train_dataloader = torch.utils.data.DataLoader( | |
| train_dataset, batch_size=cfg.train_batch_size, shuffle=True, num_workers=cfg.dataloader_num_workers, | |
| ) | |
| validation_dataloader = torch.utils.data.DataLoader( | |
| validation_dataset, batch_size=cfg.validation_batch_size, shuffle=False, num_workers=cfg.dataloader_num_workers | |
| ) | |
| validation_train_dataloader = torch.utils.data.DataLoader( | |
| validation_train_dataset, batch_size=cfg.validation_train_batch_size, shuffle=False, num_workers=cfg.dataloader_num_workers | |
| ) | |
| # Prepare everything with our `accelerator`. | |
| unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
| unet, optimizer, train_dataloader, lr_scheduler | |
| ) | |
| if cfg.use_ema: | |
| ema_unet.to(accelerator.device) | |
| # -------------------------------------- cast dtype and device -------------------------------- | |
| # For mixed precision training we cast all non-trainable weigths (vae, non-lora text_encoder and non-lora unet) to half-precision | |
| # as these weights are only used for inference, keeping weights in full precision is not required. | |
| weight_dtype = torch.float32 | |
| if accelerator.mixed_precision == "fp16": | |
| weight_dtype = torch.float16 | |
| cfg.mixed_precision = accelerator.mixed_precision | |
| elif accelerator.mixed_precision == "bf16": | |
| weight_dtype = torch.bfloat16 | |
| cfg.mixed_precision = accelerator.mixed_precision | |
| # Move text_encode and vae to gpu and cast to weight_dtype | |
| image_encoder.to(accelerator.device, dtype=weight_dtype) | |
| image_normlizer.to(accelerator.device, weight_dtype) | |
| text_encoder.to(accelerator.device, dtype=weight_dtype) | |
| vae.to(accelerator.device, dtype=weight_dtype) | |
| if face_proj_model: face_proj_model.to(accelerator.device, dtype=weight_dtype) | |
| if dino_encoder: dino_encoder.to(accelerator.device) | |
| clip_image_mean = torch.as_tensor(feature_extractor.image_mean)[:,None,None].to(accelerator.device, dtype=torch.float32) | |
| clip_image_std = torch.as_tensor(feature_extractor.image_std)[:,None,None].to(accelerator.device, dtype=torch.float32) | |
| # We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / cfg.gradient_accumulation_steps) | |
| num_train_epochs = math.ceil(cfg.max_train_steps / num_update_steps_per_epoch) | |
| # We need to initialize the trackers we use, and also store our configuration. | |
| # The trackers initializes automatically on the main process. | |
| if accelerator.is_main_process: | |
| # tracker_config = dict(vars(cfg)) | |
| tracker_config = {} | |
| accelerator.init_trackers( | |
| project_name= cfg.tracker_project_name, | |
| config= tracker_config, | |
| init_kwargs={"wandb": | |
| {"entity": "lpstarry", | |
| "notes": cfg.output_dir.split('/')[-1], | |
| # "tags": [cfg.output_dir.split('/')[-1]], | |
| }},) | |
| # -------------------------------------- load pipeline -------------------------------- | |
| # pipe = StableUnCLIPImg2ImgPipeline(feature_extractor=feature_extractor, | |
| # image_encoder=image_encoder, | |
| # image_normalizer=image_normlizer, | |
| # image_noising_scheduler= image_noising_scheduler, | |
| # tokenizer=tokenizer, | |
| # text_encoder=text_encoder, | |
| # unet=unet, | |
| # scheduler=noise_scheduler, | |
| # vae=vae).to('cuda') | |
| # -------------------------------------- train -------------------------------- | |
| total_batch_size = cfg.train_batch_size * accelerator.num_processes * cfg.gradient_accumulation_steps | |
| generator = torch.Generator(device=accelerator.device).manual_seed(cfg.seed) | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num examples = {len(train_dataset)}") | |
| logger.info(f" Num Epochs = {num_train_epochs}") | |
| logger.info(f" Instantaneous batch size per device = {cfg.train_batch_size}") | |
| logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
| logger.info(f" Gradient Accumulation steps = {cfg.gradient_accumulation_steps}") | |
| logger.info(f" Total optimization steps = {cfg.max_train_steps}") | |
| global_step = 0 | |
| first_epoch = 0 | |
| # Potentially load in the weights and states from a previous save | |
| if cfg.resume_from_checkpoint: | |
| if cfg.resume_from_checkpoint != "latest": | |
| path = os.path.basename(cfg.resume_from_checkpoint) | |
| else: | |
| # Get the most recent checkpoint | |
| if os.path.exists(os.path.join(model_dir, "checkpoint")): | |
| path = "checkpoint" | |
| else: | |
| dirs = os.listdir(model_dir) | |
| dirs = [d for d in dirs if d.startswith("checkpoint")] | |
| dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
| path = dirs[-1] if len(dirs) > 0 else None | |
| if path is None: | |
| accelerator.print( | |
| f"Checkpoint '{cfg.resume_from_checkpoint}' does not exist. Starting a new training run." | |
| ) | |
| cfg.resume_from_checkpoint = None | |
| initial_global_step = 0 | |
| else: | |
| accelerator.print(f"Resuming from checkpoint {path}") | |
| accelerator.load_state(os.path.join(model_dir, path)) | |
| global_step = int(path.split("-")[1]) | |
| initial_global_step = global_step | |
| first_epoch = global_step // num_update_steps_per_epoch | |
| if False: | |
| # log_validation_joint( | |
| # validation_dataloader, | |
| # vae, | |
| # feature_extractor, | |
| # image_encoder, | |
| # image_normlizer, | |
| # image_noising_scheduler, | |
| # tokenizer, | |
| # text_encoder, | |
| # unet, | |
| # dino_encoder, | |
| # cfg, | |
| # accelerator, | |
| # weight_dtype, | |
| # global_step, | |
| # 'validation', | |
| # vis_dir | |
| # ) | |
| log_validation( | |
| validation_train_dataloader, | |
| vae, | |
| feature_extractor, | |
| image_encoder, | |
| image_normlizer, | |
| image_noising_scheduler, | |
| tokenizer, | |
| text_encoder, | |
| unet, | |
| cfg, | |
| accelerator, | |
| weight_dtype, | |
| global_step, | |
| 'validation-train', | |
| vis_dir | |
| ) | |
| exit() | |
| progress_bar = tqdm( | |
| range(0, cfg.max_train_steps), | |
| initial=initial_global_step, | |
| desc="Steps", | |
| # Only show the progress bar once on each machine. | |
| disable=not accelerator.is_local_main_process, | |
| ) | |
| new_layer_norm = {} | |
| # Main training loop | |
| for epoch in range(first_epoch, num_train_epochs): | |
| unet.train() | |
| train_mse_loss, train_ele_loss, train_focal_loss = 0.0, 0.0, 0.0 | |
| for step, batch in enumerate(train_dataloader): | |
| # Skip steps until we reach the resumed step | |
| # if cfg.resume_from_checkpoint and epoch == first_epoch and step < resume_step: | |
| # if step % cfg.gradient_accumulation_steps == 0: | |
| # progress_bar.update(1) | |
| # continue | |
| with accelerator.accumulate(unet): | |
| # (B, Nv, 3, H, W) | |
| imgs_in, colors_out, normals_out = batch['imgs_in'], batch['imgs_out'], batch['normals_out'] | |
| ids = batch['id'] | |
| bnm, Nv = imgs_in.shape[:2] | |
| # repeat (2B, Nv, 3, H, W) | |
| imgs_in = torch.cat([imgs_in]*2, dim=0) | |
| imgs_out = torch.cat([normals_out, colors_out], dim=0) | |
| # (B*Nv, 3, H, W) | |
| imgs_in, imgs_out = rearrange(imgs_in, "B Nv C H W -> (B Nv) C H W"), rearrange(imgs_out, "B Nv C H W -> (B Nv) C H W") | |
| imgs_in, imgs_out = imgs_in.to(weight_dtype), imgs_out.to(weight_dtype) | |
| if cfg.with_smpl: | |
| smpl_in = batch['smpl_imgs_in'] | |
| smpl_in = torch.cat([smpl_in]*2, dim=0) | |
| smpl_in = rearrange(smpl_in, "B Nv C H W -> (B Nv) C H W").to(weight_dtype) | |
| else: | |
| smpl_in = None | |
| prompt_embeddings = torch.cat([batch['normal_prompt_embeddings'], batch['color_prompt_embeddings']], dim=0) | |
| # (B*Nv, N, C) | |
| prompt_embeds = rearrange(prompt_embeddings, "B Nv N C -> (B Nv) N C") | |
| prompt_embeds = prompt_embeds.to(weight_dtype) # BV, L, C | |
| # ------------------------------------project face embed -------------------------------- | |
| if face_proj_model is not None: | |
| face_embeds = batch['face_embed'] | |
| face_embeds = torch.cat([face_embeds]*2, dim=0) | |
| face_embeds = rearrange(face_embeds, "B Nv L C -> (B Nv) L C") | |
| face_embeds = face_embeds.to(weight_dtype) | |
| face_embeds = face_proj_model(face_embeds) | |
| else: | |
| face_embeds = None | |
| # ------------------------------------Encoder input image -------------------------------- | |
| imgs_in_proc = TF.resize(imgs_in, (feature_extractor.crop_size['height'], feature_extractor.crop_size['width']), interpolation=InterpolationMode.BICUBIC) | |
| # do the normalization in float32 to preserve precision | |
| imgs_in_proc = ((imgs_in_proc.float() - clip_image_mean) / clip_image_std).to(weight_dtype) | |
| # (B*Nv, 1024) | |
| image_embeddings = image_encoder(imgs_in_proc).image_embeds | |
| noise_level = torch.tensor([0], device=accelerator.device) | |
| # (B*Nv, 2048) | |
| image_embeddings = noise_image_embeddings(image_embeddings, noise_level, generator=generator, image_normalizer=image_normlizer, | |
| image_noising_scheduler= image_noising_scheduler).to(weight_dtype) | |
| #--------------------------------------vae input and output latents --------------------------------------- | |
| cond_vae_embeddings = vae.encode(imgs_in * 2.0 - 1.0).latent_dist.mode() # | |
| if cfg.scale_input_latents: | |
| cond_vae_embeddings *= vae.config.scaling_factor | |
| if cfg.with_smpl: | |
| cond_smpl_embeddings = vae.encode(smpl_in * 2.0 - 1.0).latent_dist.mode() | |
| if cfg.scale_input_latents: | |
| cond_smpl_embeddings *= vae.config.scaling_factor | |
| cond_vae_embeddings = torch.cat([cond_vae_embeddings, cond_smpl_embeddings], dim=1) | |
| # sample outputs latent | |
| latents = vae.encode(imgs_out * 2.0 - 1.0).latent_dist.sample() * vae.config.scaling_factor | |
| noise = torch.randn_like(latents) | |
| bsz = latents.shape[0] | |
| # same noise for different views of the same object | |
| timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz // cfg.num_views,), device=latents.device) | |
| timesteps = repeat(timesteps, "b -> (b v)", v=cfg.num_views) | |
| timesteps = timesteps.long() | |
| noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | |
| # Conditioning dropout to support classifier-free guidance during inference. For more details | |
| # check out the section 3.2.1 of the original paper https://arxiv.org/abs/2211.09800. | |
| if cfg.use_classifier_free_guidance and cfg.condition_drop_rate > 0.: | |
| if cfg.drop_type == 'drop_as_a_whole': | |
| # drop a group of normals and colors as a whole | |
| random_p = torch.rand(bnm, device=latents.device, generator=generator) | |
| # Sample masks for the conditioning images. | |
| image_mask_dtype = cond_vae_embeddings.dtype | |
| image_mask = 1 - ( | |
| (random_p >= cfg.condition_drop_rate).to(image_mask_dtype) | |
| * (random_p < 3 * cfg.condition_drop_rate).to(image_mask_dtype) | |
| ) | |
| image_mask = image_mask.reshape(bnm, 1, 1, 1, 1).repeat(1, Nv, 1, 1, 1) | |
| image_mask = rearrange(image_mask, "B Nv C H W -> (B Nv) C H W") | |
| image_mask = torch.cat([image_mask]*2, dim=0) | |
| # Final image conditioning. | |
| cond_vae_embeddings = image_mask * cond_vae_embeddings | |
| # Sample masks for the conditioning images. | |
| clip_mask_dtype = image_embeddings.dtype | |
| clip_mask = 1 - ( | |
| (random_p < 2 * cfg.condition_drop_rate).to(clip_mask_dtype) | |
| ) | |
| clip_mask = clip_mask.reshape(bnm, 1, 1).repeat(1, Nv, 1) | |
| clip_mask = rearrange(clip_mask, "B Nv C -> (B Nv) C") | |
| clip_mask = torch.cat([clip_mask]*2, dim=0) | |
| # Final image conditioning. | |
| image_embeddings = clip_mask * image_embeddings | |
| elif cfg.drop_type == 'drop_independent': | |
| random_p = torch.rand(bsz, device=latents.device, generator=generator) | |
| # Sample masks for the conditioning images. | |
| image_mask_dtype = cond_vae_embeddings.dtype | |
| image_mask = 1 - ( | |
| (random_p >= cfg.condition_drop_rate).to(image_mask_dtype) | |
| * (random_p < 3 * cfg.condition_drop_rate).to(image_mask_dtype) | |
| ) | |
| image_mask = image_mask.reshape(bsz, 1, 1, 1) | |
| # Final image conditioning. | |
| cond_vae_embeddings = image_mask * cond_vae_embeddings | |
| # Sample masks for the conditioning images. | |
| clip_mask_dtype = image_embeddings.dtype | |
| clip_mask = 1 - ( | |
| (random_p < 2 * cfg.condition_drop_rate).to(clip_mask_dtype) | |
| ) | |
| clip_mask = clip_mask.reshape(bsz, 1, 1) | |
| # Final image conditioning. | |
| image_embeddings = clip_mask * image_embeddings | |
| # (B*Nv, 8, Hl, Wl) | |
| latent_model_input = torch.cat([noisy_latents, cond_vae_embeddings], dim=1) | |
| model_out = unet( | |
| latent_model_input, | |
| timesteps, | |
| encoder_hidden_states=prompt_embeds, | |
| class_labels=image_embeddings, | |
| dino_feature=face_embeds, | |
| vis_max_min=False | |
| ) | |
| if cfg.regress_elevation or cfg.regress_focal_length: | |
| model_pred = model_out[0].sample | |
| pose_pred = model_out[1] | |
| else: | |
| model_pred = model_out[0].sample | |
| pose_pred = None | |
| # Get the target for loss depending on the prediction type | |
| if noise_scheduler.config.prediction_type == "epsilon": | |
| target = noise | |
| elif noise_scheduler.config.prediction_type == "v_prediction": | |
| target = noise_scheduler.get_velocity(latents, noise, timesteps) | |
| # target = noise_scheduler._get_prev_sample(latents, noise, timesteps) | |
| else: | |
| raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | |
| if cfg.snr_gamma is None: | |
| loss_mse = F.mse_loss(model_pred.float(), target.float(), reduction="mean").to(weight_dtype) | |
| else: | |
| # Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556. | |
| # Since we predict the noise instead of x_0, the original formulation is slightly changed. | |
| # This is discussed in Section 4.2 of the same paper. | |
| snr = compute_snr(timesteps) | |
| mse_loss_weights = ( | |
| torch.stack([snr, cfg.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr | |
| ) | |
| # We first calculate the original loss. Then we mean over the non-batch dimensions and | |
| # rebalance the sample-wise losses with their respective loss weights. | |
| # Finally, we take the mean of the rebalanced loss. | |
| loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") | |
| loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights | |
| loss_mse = loss.mean().to(weight_dtype) | |
| # Gather the losses across all processes for logging (if we use distributed training). | |
| avg_mse_loss = accelerator.gather(loss_mse.repeat(cfg.train_batch_size)).mean() | |
| train_mse_loss += avg_mse_loss.item() / cfg.gradient_accumulation_steps | |
| if cfg.regress_elevation: | |
| loss_ele = F.mse_loss(pose_pred[:, 0:1], batch['elevations_cond'].to(accelerator.device).float(), reduction="mean").to(weight_dtype) | |
| avg_ele_loss = accelerator.gather(loss_ele.repeat(cfg.train_batch_size)).mean() | |
| train_ele_loss += avg_ele_loss.item() / cfg.gradient_accumulation_steps | |
| if cfg.plot_pose_acc: | |
| ele_acc = torch.sum(torch.abs(pose_pred[:, 0:1] - torch.cat([batch['elevations_cond']]*2)) < 0.01) / pose_pred.shape[0] | |
| else: | |
| loss_ele = torch.tensor(0.0, device=accelerator.device, dtype=weight_dtype) | |
| train_ele_loss += torch.tensor(0.0, device=accelerator.device, dtype=weight_dtype) | |
| if cfg.plot_pose_acc: | |
| ele_acc = torch.tensor(0.0, device=accelerator.device, dtype=weight_dtype) | |
| if cfg.regress_focal_length: | |
| loss_focal = F.mse_loss(pose_pred[:, 1:], batch['focal_cond'].to(accelerator.device).float(), reduction="mean").to(weight_dtype) | |
| avg_focal_loss = accelerator.gather(loss_focal.repeat(cfg.train_batch_size)).mean() | |
| train_focal_loss += avg_focal_loss.item() / cfg.gradient_accumulation_steps | |
| if cfg.plot_pose_acc: | |
| focal_acc = torch.sum(torch.abs(pose_pred[:, 1:] - torch.cat([batch['focal_cond']]*2)) < 0.01) / pose_pred.shape[0] | |
| else: | |
| loss_focal = torch.tensor(0.0, device=accelerator.device, dtype=weight_dtype) | |
| train_focal_loss += torch.tensor(0.0, device=accelerator.device, dtype=weight_dtype) | |
| if cfg.plot_pose_acc: | |
| focal_acc = torch.tensor(0.0, device=accelerator.device, dtype=weight_dtype) | |
| # Backpropagate | |
| loss = loss_mse + cfg.elevation_loss_weight * loss_ele + cfg.focal_loss_weight * loss_focal | |
| accelerator.backward(loss) | |
| if accelerator.sync_gradients and cfg.max_grad_norm is not None: | |
| accelerator.clip_grad_norm_(unet.parameters(), cfg.max_grad_norm) | |
| optimizer.step() | |
| lr_scheduler.step() | |
| optimizer.zero_grad() | |
| # Checks if the accelerator has performed an optimization step behind the scenes | |
| if accelerator.sync_gradients: | |
| if cfg.use_ema: | |
| ema_unet.step(unet) | |
| progress_bar.update(1) | |
| global_step += 1 | |
| # accelerator.log({"train_loss": train_loss}, step=global_step) | |
| accelerator.log({"train_mse_loss": train_mse_loss}, step=global_step) | |
| accelerator.log({"train_ele_loss": train_ele_loss}, step=global_step) | |
| if cfg.plot_pose_acc: | |
| accelerator.log({"ele_acc": ele_acc}, step=global_step) | |
| accelerator.log({"focal_acc": focal_acc}, step=global_step) | |
| accelerator.log({"train_focal_loss": train_focal_loss}, step=global_step) | |
| train_ele_loss, train_mse_loss, train_focal_loss = 0.0, 0.0, 0.0 | |
| if global_step % cfg.checkpointing_steps == 0: | |
| if accelerator.is_main_process: | |
| if cfg.checkpoints_total_limit is not None: | |
| checkpoints = os.listdir(model_dir) | |
| checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] | |
| checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) | |
| # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints | |
| if len(checkpoints) >= cfg.checkpoints_total_limit: | |
| num_to_remove = len(checkpoints) - cfg.checkpoints_total_limit + 1 | |
| removing_checkpoints = checkpoints[0:num_to_remove] | |
| logger.info( | |
| f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" | |
| ) | |
| logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") | |
| for removing_checkpoint in removing_checkpoints: | |
| removing_checkpoint = os.path.join(model_dir, removing_checkpoint) | |
| shutil.rmtree(removing_checkpoint) | |
| save_path = os.path.join(model_dir, f"checkpoint-{global_step}") | |
| accelerator.save_state(save_path) | |
| logger.info(f"Saved state to {save_path}") | |
| if global_step % cfg.validation_steps == 0 or (cfg.validation_sanity_check and global_step == 1): | |
| if accelerator.is_main_process: | |
| if cfg.use_ema: | |
| # Store the UNet parameters temporarily and load the EMA parameters to perform inference. | |
| ema_unet.store(unet.parameters()) | |
| ema_unet.copy_to(unet.parameters()) | |
| torch.cuda.empty_cache() | |
| log_validation_joint( | |
| validation_dataloader, | |
| vae, | |
| feature_extractor, | |
| image_encoder, | |
| image_normlizer, | |
| image_noising_scheduler, | |
| tokenizer, | |
| text_encoder, | |
| unet, | |
| face_proj_model, | |
| cfg, | |
| accelerator, | |
| weight_dtype, | |
| global_step, | |
| 'validation', | |
| vis_dir | |
| ) | |
| log_validation( | |
| validation_train_dataloader, | |
| vae, | |
| feature_extractor, | |
| image_encoder, | |
| image_normlizer, | |
| image_noising_scheduler, | |
| tokenizer, | |
| text_encoder, | |
| unet, | |
| face_proj_model, | |
| cfg, | |
| accelerator, | |
| weight_dtype, | |
| global_step, | |
| 'validation_train', | |
| vis_dir | |
| ) | |
| if cfg.use_ema: | |
| # Switch back to the original UNet parameters. | |
| ema_unet.restore(unet.parameters()) | |
| logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} | |
| progress_bar.set_postfix(**logs) | |
| if global_step >= cfg.max_train_steps: | |
| break | |
| # Create the pipeline using the trained modules and save it. | |
| accelerator.wait_for_everyone() | |
| if accelerator.is_main_process: | |
| unet = accelerator.unwrap_model(unet) | |
| if cfg.use_ema: | |
| ema_unet.copy_to(unet.parameters()) | |
| pipeline = StableUnCLIPImg2ImgPipeline( | |
| image_encoder=image_encoder, feature_extractor=feature_extractor, image_normalizer=image_normlizer, | |
| image_noising_scheduler=image_noising_scheduler, tokenizer=tokenizer, text_encoder=text_encoder, | |
| vae=vae, unet=unet, | |
| scheduler=DDIMScheduler.from_pretrained_linear(cfg.pretrained_model_name_or_path, subfolder="scheduler"), | |
| **cfg.pipe_kwargs | |
| ) | |
| os.makedirs(os.path.join(model_dir, "ckpts"), exist_ok=True) | |
| pipeline.save_pretrained(os.path.join(model_dir, "ckpts")) | |
| accelerator.end_training() | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--config', type=str, required=True) | |
| args = parser.parse_args() | |
| schema = OmegaConf.structured(TrainingConfig) | |
| cfg = OmegaConf.load(args.config) | |
| cfg = OmegaConf.merge(schema, cfg) | |
| main(cfg) | |
| # device = 'cuda' | |
| # ## -------------------------------------- load models -------------------------------- | |
| # image_encoder = CLIPVisionModelWithProjection.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="image_encoder", revision=cfg.revision) | |
| # feature_extractor = CLIPImageProcessor.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="feature_extractor", revision=cfg.revision) | |
| # image_noising_scheduler = DDPMScheduler.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="image_noising_scheduler") | |
| # image_normlizer = StableUnCLIPImageNormalizer.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="image_normalizer") | |
| # tokenizer = CLIPTokenizer.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="tokenizer", revision=cfg.revision) | |
| # text_encoder = CLIPTextModel.from_pretrained(cfg.pretrained_model_name_or_path, subfolder='text_encoder', revision=cfg.revision) | |
| # noise_scheduler = PNDMScheduler.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="scheduler") | |
| # vae = AutoencoderKL.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="vae", revision=cfg.revision) | |
| # unet = UNetMV2DConditionModel.from_pretrained_2d(cfg.pretrained_model_name_or_path, subfolder="unet", revision=cfg.revision, **cfg.unet_from_pretrained_kwargs) | |
| # # unet = UNetMV2DConditionModel.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="unet", revision=cfg.revision, | |
| # # **cfg.unet_from_pretrained_kwargs | |
| # # ) | |
| # if cfg.enable_xformers_memory_efficient_attention: | |
| # if is_xformers_available(): | |
| # import xformers | |
| # xformers_version = version.parse(xformers.__version__) | |
| # if xformers_version == version.parse("0.0.16"): | |
| # print( | |
| # "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." | |
| # ) | |
| # unet.enable_xformers_memory_efficient_attention() | |
| # print("use xformers.") | |
| # # from diffusers import StableUnCLIPImg2ImgPipeline | |
| # # -------------------------------------- load pipeline -------------------------------- | |
| # pipe = StableUnCLIPImg2ImgPipeline(feature_extractor=feature_extractor, | |
| # image_encoder=image_encoder, | |
| # image_normalizer=image_normlizer, | |
| # image_noising_scheduler= image_noising_scheduler, | |
| # tokenizer=tokenizer, | |
| # text_encoder=text_encoder, | |
| # unet=unet, | |
| # scheduler=noise_scheduler, | |
| # vae=vae).to('cuda') | |
| # # -------------------------------------- input -------------------------------- | |
| # # image = Image.open('test/woman.jpg') | |
| # # w, h = image.size | |
| # # image = np.asarray(image)[:w, :w, :] | |
| # # image_in = Image.fromarray(image).resize((768, 768)) | |
| # im_path = '/mnt/pfs/users/longxiaoxiao/data/test_images/syncdreamer_testset/box.png' | |
| # rgba = np.array(Image.open(im_path)) / 255.0 | |
| # rgb = rgba[:,:,:3] | |
| # alpha = rgba[:,:,3:4] | |
| # bg_color = np.array([1., 1., 1.]) | |
| # image_in = rgb * alpha + (1 - alpha) * bg_color[None,None,:] | |
| # image_in = Image.fromarray((image_in * 255).astype(np.uint8)).resize((768, 768)) | |
| # res = pipe(image_in, 'a rendering image of 3D models, left view, normal map.').images[0] | |
| # res.save("unclip.png") |