Spaces:
Running
on
Zero
Running
on
Zero
| from torchvision.utils import make_grid | |
| from PIL import Image, ImageDraw, ImageFont | |
| import numpy as np | |
| import torch | |
| import math | |
| import cv2 | |
| def make_grid_(imgs, save_file, nrow=10, pad_value=1): | |
| if isinstance(imgs, list): | |
| if isinstance(imgs[0], Image.Image): | |
| imgs = [torch.from_numpy(np.array(img)/255.) for img in imgs] | |
| elif isinstance(imgs[0], np.ndarray): | |
| imgs = [torch.from_numpy(img/255.) for img in imgs] | |
| imgs = torch.stack(imgs, 0).permute(0, 3, 1, 2) | |
| if isinstance(imgs, np.ndarray): | |
| imgs = torch.from_numpy(imgs) | |
| img_grid = make_grid(imgs, nrow=nrow, padding=2, pad_value=pad_value) | |
| img_grid = img_grid.permute(1, 2, 0).numpy() | |
| img_grid = (img_grid * 255).astype(np.uint8) | |
| img_grid = Image.fromarray(img_grid) | |
| img_grid.save(save_file) | |
| def draw_caption(img, text, pos, size=100, color=(128, 128, 128)): | |
| draw = ImageDraw.Draw(img) | |
| # font = ImageFont.truetype(size= size) | |
| font = ImageFont.load_default() | |
| font = font.font_variant(size=size) | |
| draw.text(pos, text, color, font=font) | |
| return img | |
| def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]): | |
| stickwidth = 4 | |
| limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]]) | |
| kps = np.array(kps) | |
| w, h = image_pil.size | |
| out_img = np.zeros([h, w, 3]) | |
| for i in range(len(limbSeq)): | |
| index = limbSeq[i] | |
| color = color_list[index[0]] | |
| x = kps[index][:, 0] | |
| y = kps[index][:, 1] | |
| length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5 | |
| angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1])) | |
| polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1) | |
| out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color) | |
| out_img = (out_img * 0.6).astype(np.uint8) | |
| for idx_kp, kp in enumerate(kps): | |
| color = color_list[idx_kp] | |
| x, y = kp | |
| out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1) | |
| out_img_pil = Image.fromarray(out_img.astype(np.uint8)) | |
| return out_img_pil | |
| def resize_img(input_image, max_side=1280, min_side=1024, size=None, | |
| pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64): | |
| w, h = input_image.size | |
| if size is not None: | |
| w_resize_new, h_resize_new = size | |
| else: | |
| ratio = min_side / min(h, w) | |
| w, h = round(ratio*w), round(ratio*h) | |
| ratio = max_side / max(h, w) | |
| input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode) | |
| w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number | |
| h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number | |
| input_image = input_image.resize([w_resize_new, h_resize_new], mode) | |
| if pad_to_max_side: | |
| res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 | |
| offset_x = (max_side - w_resize_new) // 2 | |
| offset_y = (max_side - h_resize_new) // 2 | |
| res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image) | |
| input_image = Image.fromarray(res) | |
| return input_image |