Spaces:
Running
on
Zero
Running
on
Zero
| # ------------------------------------------------------------------------------------ | |
| # Enhancing Transformers | |
| # Copyright (c) 2022 Thuan H. Nguyen. All Rights Reserved. | |
| # Licensed under the MIT License [see LICENSE for details] | |
| # ------------------------------------------------------------------------------------ | |
| # Modified from ViT-Pytorch (https://github.com/lucidrains/vit-pytorch) | |
| # Copyright (c) 2020 Phil Wang. All Rights Reserved. | |
| # ------------------------------------------------------------------------------------ | |
| import math | |
| import numpy as np | |
| from typing import Union, Tuple, List, Optional | |
| from functools import partial | |
| import pytorch_lightning as pl | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from einops import rearrange, repeat | |
| from einops.layers.torch import Rearrange | |
| def get_2d_sincos_pos_embed(embed_dim, grid_size): | |
| """ | |
| grid_size: int or (int, int) of the grid height and width | |
| return: | |
| pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) | |
| """ | |
| grid_size = (grid_size, grid_size) if type(grid_size) != tuple else grid_size | |
| grid_h = np.arange(grid_size[0], dtype=np.float32) | |
| grid_w = np.arange(grid_size[1], dtype=np.float32) | |
| grid = np.meshgrid(grid_w, grid_h) # here w goes first | |
| grid = np.stack(grid, axis=0) | |
| grid = grid.reshape([2, 1, grid_size[0], grid_size[1]]) | |
| pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) | |
| return pos_embed | |
| def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): | |
| assert embed_dim % 2 == 0 | |
| # use half of dimensions to encode grid_h | |
| emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) | |
| emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) | |
| emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) | |
| return emb | |
| def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): | |
| """ | |
| embed_dim: output dimension for each position | |
| pos: a list of positions to be encoded: size (M,) | |
| out: (M, D) | |
| """ | |
| assert embed_dim % 2 == 0 | |
| omega = np.arange(embed_dim // 2, dtype=np.float32) | |
| omega /= embed_dim / 2. | |
| omega = 1. / 10000**omega # (D/2,) | |
| pos = pos.reshape(-1) # (M,) | |
| out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product | |
| emb_sin = np.sin(out) # (M, D/2) | |
| emb_cos = np.cos(out) # (M, D/2) | |
| emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) | |
| return emb | |
| def init_weights(m): | |
| if isinstance(m, nn.Linear): | |
| # we use xavier_uniform following official JAX ViT: | |
| torch.nn.init.xavier_uniform_(m.weight) | |
| if m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.LayerNorm): | |
| nn.init.constant_(m.bias, 0) | |
| nn.init.constant_(m.weight, 1.0) | |
| elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): | |
| w = m.weight.data | |
| torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1])) | |
| class PreNorm(nn.Module): | |
| def __init__(self, dim: int, fn: nn.Module) -> None: | |
| super().__init__() | |
| self.norm = nn.LayerNorm(dim) | |
| self.fn = fn | |
| def forward(self, x: torch.FloatTensor, **kwargs) -> torch.FloatTensor: | |
| return self.fn(self.norm(x), **kwargs) | |
| class FeedForward(nn.Module): | |
| def __init__(self, dim: int, hidden_dim: int) -> None: | |
| super().__init__() | |
| self.net = nn.Sequential( | |
| nn.Linear(dim, hidden_dim), | |
| nn.Tanh(), | |
| nn.Linear(hidden_dim, dim) | |
| ) | |
| def forward(self, x: torch.FloatTensor) -> torch.FloatTensor: | |
| return self.net(x) | |
| class Attention(nn.Module): | |
| def __init__(self, dim: int, heads: int = 8, dim_head: int = 64) -> None: | |
| super().__init__() | |
| inner_dim = dim_head * heads | |
| project_out = not (heads == 1 and dim_head == dim) | |
| self.heads = heads | |
| self.scale = dim_head ** -0.5 | |
| self.attend = nn.Softmax(dim = -1) | |
| self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) | |
| self.to_out = nn.Linear(inner_dim, dim) if project_out else nn.Identity() | |
| def forward(self, x: torch.FloatTensor) -> torch.FloatTensor: | |
| qkv = self.to_qkv(x).chunk(3, dim = -1) | |
| q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) | |
| attn = torch.matmul(q, k.transpose(-1, -2)) * self.scale | |
| attn = self.attend(attn) | |
| out = torch.matmul(attn, v) | |
| out = rearrange(out, 'b h n d -> b n (h d)') | |
| return self.to_out(out) | |
| class CrossAttention(nn.Module): | |
| def __init__(self, dim: int, heads: int = 8, dim_head: int = 64) -> None: | |
| super().__init__() | |
| inner_dim = dim_head * heads | |
| project_out = not (heads == 1 and dim_head == dim) | |
| self.heads = heads | |
| self.scale = dim_head ** -0.5 | |
| self.attend = nn.Softmax(dim = -1) | |
| self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False) | |
| self.to_q = nn.Linear(dim, inner_dim, bias = False) | |
| self.norm = nn.LayerNorm(dim) | |
| self.to_out = nn.Linear(inner_dim, dim) if project_out else nn.Identity() | |
| self.multi_head_attention=PreNorm(dim, Attention(dim, heads=heads, dim_head=dim_head)) | |
| def forward(self, x: torch.FloatTensor, q_x:torch.FloatTensor) -> torch.FloatTensor: | |
| q_in = self.multi_head_attention(q_x)+q_x | |
| q_in = self.norm(q_in) | |
| q = rearrange(self.to_q(q_in),'b n (h d) -> b h n d', h = self.heads) | |
| kv = self.to_kv(x).chunk(2, dim = -1) | |
| k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), kv) | |
| attn = torch.matmul(q, k.transpose(-1, -2)) * self.scale | |
| attn = self.attend(attn) | |
| out = torch.matmul(attn, v) | |
| out = rearrange(out, 'b h n d -> b n (h d)') | |
| return self.to_out(out),q_in | |
| class Transformer(nn.Module): | |
| def __init__(self, dim: int, depth: int, heads: int, dim_head: int, mlp_dim: int) -> None: | |
| super().__init__() | |
| self.layers = nn.ModuleList([]) | |
| for idx in range(depth): | |
| layer = nn.ModuleList([PreNorm(dim, Attention(dim, heads=heads, dim_head=dim_head)), | |
| PreNorm(dim, FeedForward(dim, mlp_dim))]) | |
| self.layers.append(layer) | |
| self.norm = nn.LayerNorm(dim) | |
| def forward(self, x: torch.FloatTensor) -> torch.FloatTensor: | |
| for attn, ff in self.layers: | |
| x = attn(x) + x | |
| x = ff(x) + x | |
| return self.norm(x) | |
| class CrossTransformer(nn.Module): | |
| def __init__(self, dim: int, depth: int, heads: int, dim_head: int, mlp_dim: int) -> None: | |
| super().__init__() | |
| self.layers = nn.ModuleList([]) | |
| for idx in range(depth): | |
| layer = nn.ModuleList([CrossAttention(dim, heads=heads, dim_head=dim_head), | |
| PreNorm(dim, FeedForward(dim, mlp_dim))]) | |
| self.layers.append(layer) | |
| self.norm = nn.LayerNorm(dim) | |
| def forward(self, x: torch.FloatTensor, q_x:torch.FloatTensor) -> torch.FloatTensor: | |
| encoder_output=x | |
| for attn, ff in self.layers: | |
| x,q_in = attn(encoder_output, q_x) | |
| x = x + q_in | |
| x = ff(x) + x | |
| q_x=x | |
| return self.norm(q_x) | |
| class ViTEncoder(nn.Module): | |
| def __init__(self, image_size: Union[Tuple[int, int], int], patch_size: Union[Tuple[int, int], int], | |
| dim: int, depth: int, heads: int, mlp_dim: int, channels: int = 3, dim_head: int = 64) -> None: | |
| super().__init__() | |
| image_height, image_width = image_size if isinstance(image_size, tuple) \ | |
| else (image_size, image_size) | |
| patch_height, patch_width = patch_size if isinstance(patch_size, tuple) \ | |
| else (patch_size, patch_size) | |
| assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' | |
| en_pos_embedding = get_2d_sincos_pos_embed(dim, (image_height // patch_height, image_width // patch_width)) | |
| self.num_patches = (image_height // patch_height) * (image_width // patch_width) | |
| self.patch_dim = channels * patch_height * patch_width | |
| self.to_patch_embedding = nn.Sequential( | |
| nn.Conv2d(channels, dim, kernel_size=patch_size, stride=patch_size), | |
| Rearrange('b c h w -> b (h w) c'), | |
| ) | |
| self.en_pos_embedding = nn.Parameter(torch.from_numpy(en_pos_embedding).float().unsqueeze(0), requires_grad=False) | |
| self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim) | |
| self.apply(init_weights) | |
| def forward(self, img: torch.FloatTensor) -> torch.FloatTensor: | |
| x = self.to_patch_embedding(img) | |
| x = x + self.en_pos_embedding | |
| x = self.transformer(x) | |
| return x | |
| class ViTDecoder(nn.Module): | |
| def __init__(self, image_size: Union[Tuple[int, int], int], patch_size: Union[Tuple[int, int], int], | |
| dim: int, depth: int, heads: int, mlp_dim: int, channels: int = 32, dim_head: int = 64) -> None: | |
| super().__init__() | |
| image_height, image_width = image_size if isinstance(image_size, tuple) \ | |
| else (image_size, image_size) | |
| patch_height, patch_width = patch_size if isinstance(patch_size, tuple) \ | |
| else (patch_size, patch_size) | |
| assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' | |
| de_pos_embedding = get_2d_sincos_pos_embed(dim, (image_height // patch_height, image_width // patch_width)) | |
| self.num_patches = (image_height // patch_height) * (image_width // patch_width) | |
| self.patch_dim = channels * patch_height * patch_width | |
| self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim) | |
| self.de_pos_embedding = nn.Parameter(torch.from_numpy(de_pos_embedding).float().unsqueeze(0), requires_grad=False) | |
| self.to_pixel = nn.Sequential( | |
| Rearrange('b (h w) c -> b c h w', h=image_height // patch_height), | |
| nn.ConvTranspose2d(dim, channels, kernel_size=4, stride=4) | |
| ) | |
| self.apply(init_weights) | |
| def forward(self, token: torch.FloatTensor) -> torch.FloatTensor: | |
| x = token + self.de_pos_embedding | |
| x = self.transformer(x) | |
| x = self.to_pixel(x) | |
| return x | |
| def get_last_layer(self) -> nn.Parameter: | |
| return self.to_pixel[-1].weight | |
| class CrossAttDecoder(nn.Module): | |
| def __init__(self, image_size: Union[Tuple[int, int], int], patch_size: Union[Tuple[int, int], int], | |
| dim: int, depth: int, heads: int, mlp_dim: int, channels: int = 32, dim_head: int = 64) -> None: | |
| super().__init__() | |
| image_height, image_width = image_size if isinstance(image_size, tuple) \ | |
| else (image_size, image_size) | |
| patch_height, patch_width = patch_size if isinstance(patch_size, tuple) \ | |
| else (patch_size, patch_size) | |
| self.to_patch_embedding = nn.Sequential( | |
| nn.Conv2d(3, dim, kernel_size=patch_size, stride=patch_size), | |
| Rearrange('b c h w -> b (h w) c'), | |
| ) | |
| assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' | |
| de_pos_embedding = get_2d_sincos_pos_embed(dim, (image_height // patch_height, image_width // patch_width)) | |
| self.num_patches = (image_height // patch_height) * (image_width // patch_width) | |
| self.patch_dim = channels * patch_height * patch_width | |
| self.transformer = CrossTransformer(dim, depth, heads, dim_head, mlp_dim) | |
| self.de_pos_embedding = nn.Parameter(torch.from_numpy(de_pos_embedding).float().unsqueeze(0), requires_grad=False) | |
| self.to_pixel = nn.Sequential( | |
| Rearrange('b (h w) c -> b c h w', h=image_height // patch_height), | |
| nn.ConvTranspose2d(dim, channels, kernel_size=4, stride=4) | |
| ) | |
| self.apply(init_weights) | |
| def forward(self, token: torch.FloatTensor, query_img:torch.FloatTensor) -> torch.FloatTensor: | |
| # batch_size=token.shape[0] | |
| # query=self.query.repeat(batch_size,1,1)+self.de_pos_embedding | |
| query=self.to_patch_embedding(query_img)+self.de_pos_embedding | |
| x = token + self.de_pos_embedding | |
| x = self.transformer(x,query) | |
| x = self.to_pixel(x) | |
| return x | |
| def get_last_layer(self) -> nn.Parameter: | |
| return self.to_pixel[-1].weight | |
| class BaseQuantizer(nn.Module): | |
| def __init__(self, embed_dim: int, n_embed: int, straight_through: bool = True, use_norm: bool = True, | |
| use_residual: bool = False, num_quantizers: Optional[int] = None) -> None: | |
| super().__init__() | |
| self.straight_through = straight_through | |
| self.norm = lambda x: F.normalize(x, dim=-1) if use_norm else x | |
| self.use_residual = use_residual | |
| self.num_quantizers = num_quantizers | |
| self.embed_dim = embed_dim | |
| self.n_embed = n_embed | |
| self.embedding = nn.Embedding(self.n_embed, self.embed_dim) | |
| self.embedding.weight.data.normal_() | |
| def quantize(self, z: torch.FloatTensor) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.LongTensor]: | |
| pass | |
| def forward(self, z: torch.FloatTensor) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.LongTensor]: | |
| if not self.use_residual: | |
| z_q, loss, encoding_indices = self.quantize(z) | |
| else: | |
| z_q = torch.zeros_like(z) | |
| residual = z.detach().clone() | |
| losses = [] | |
| encoding_indices = [] | |
| for _ in range(self.num_quantizers): | |
| z_qi, loss, indices = self.quantize(residual.clone()) | |
| residual.sub_(z_qi) | |
| z_q.add_(z_qi) | |
| encoding_indices.append(indices) | |
| losses.append(loss) | |
| losses, encoding_indices = map(partial(torch.stack, dim = -1), (losses, encoding_indices)) | |
| loss = losses.mean() | |
| # preserve gradients with straight-through estimator | |
| if self.straight_through: | |
| z_q = z + (z_q - z).detach() | |
| return z_q, loss, encoding_indices | |
| class VectorQuantizer(BaseQuantizer): | |
| def __init__(self, embed_dim: int, n_embed: int, beta: float = 0.25, use_norm: bool = True, | |
| use_residual: bool = False, num_quantizers: Optional[int] = None, **kwargs) -> None: | |
| super().__init__(embed_dim, n_embed, True, | |
| use_norm, use_residual, num_quantizers) | |
| self.beta = beta | |
| def quantize(self, z: torch.FloatTensor) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.LongTensor]: | |
| z_reshaped_norm = self.norm(z.view(-1, self.embed_dim)) | |
| embedding_norm = self.norm(self.embedding.weight) | |
| d = torch.sum(z_reshaped_norm ** 2, dim=1, keepdim=True) + \ | |
| torch.sum(embedding_norm ** 2, dim=1) - 2 * \ | |
| torch.einsum('b d, n d -> b n', z_reshaped_norm, embedding_norm) | |
| encoding_indices = torch.argmin(d, dim=1).unsqueeze(1) | |
| encoding_indices = encoding_indices.view(*z.shape[:-1]) | |
| z_q = self.embedding(encoding_indices).view(z.shape) | |
| z_qnorm, z_norm = self.norm(z_q), self.norm(z) | |
| # compute loss for embedding | |
| loss = self.beta * torch.mean((z_qnorm.detach() - z_norm)**2) + \ | |
| torch.mean((z_qnorm - z_norm.detach())**2) | |
| return z_qnorm, loss, encoding_indices | |
| class ViTVQ(pl.LightningModule): | |
| def __init__(self,image_size=512, patch_size=16,channels=3) -> None: | |
| super().__init__() | |
| self.encoder = ViTEncoder(image_size=image_size, patch_size=patch_size, dim=256,depth=8,heads=8,mlp_dim=2048,channels=channels) | |
| self.F_decoder = ViTDecoder(image_size=image_size, patch_size=patch_size, dim=256,depth=3,heads=8,mlp_dim=2048) | |
| self.B_decoder= CrossAttDecoder(image_size=image_size, patch_size=patch_size, dim=256,depth=3,heads=8,mlp_dim=2048) | |
| self.R_decoder= CrossAttDecoder(image_size=image_size, patch_size=patch_size, dim=256,depth=3,heads=8,mlp_dim=2048) | |
| self.L_decoder= CrossAttDecoder(image_size=image_size, patch_size=patch_size, dim=256,depth=3,heads=8,mlp_dim=2048) | |
| # self.quantizer = VectorQuantizer(embed_dim=32,n_embed=8192) | |
| # self.pre_quant = nn.Linear(512, 32) | |
| # self.post_quant = nn.Linear(32, 512) | |
| def forward(self, x: torch.FloatTensor,smpl_normal) -> torch.FloatTensor: | |
| enc_out = self.encode(x) | |
| dec = self.decode(enc_out,smpl_normal) | |
| return dec | |
| def encode(self, x: torch.FloatTensor) -> Tuple[torch.FloatTensor, torch.FloatTensor]: | |
| h = self.encoder(x) | |
| # h = self.pre_quant(h) | |
| # quant, emb_loss, _ = self.quantizer(h) | |
| return h #, emb_loss | |
| def decode(self, enc_out: torch.FloatTensor,smpl_normal) -> torch.FloatTensor: | |
| back_query=smpl_normal['T_normal_B'] | |
| right_query=smpl_normal['T_normal_R'] | |
| left_query=smpl_normal['T_normal_L'] | |
| # quant = self.post_quant(quant) | |
| dec_F = self.F_decoder(enc_out) | |
| dec_B = self.B_decoder(enc_out,back_query) | |
| dec_R = self.R_decoder(enc_out,right_query) | |
| dec_L = self.L_decoder(enc_out,left_query) | |
| return (dec_F,dec_B,dec_R,dec_L) | |
| # def encode_codes(self, x: torch.FloatTensor) -> torch.LongTensor: | |
| # h = self.encoder(x) | |
| # h = self.pre_quant(h) | |
| # _, _, codes = self.quantizer(h) | |
| # return codes | |
| # def decode_codes(self, code: torch.LongTensor) -> torch.FloatTensor: | |
| # quant = self.quantizer.embedding(code) | |
| # quant = self.quantizer.norm(quant) | |
| # if self.quantizer.use_residual: | |
| # quant = quant.sum(-2) | |
| # dec = self.decode(quant) | |
| # return dec |