Spaces:
Running
on
L40S
Running
on
L40S
File size: 7,860 Bytes
fc0a183 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import argparse
import gc
import os
import random
import time
import imageio
import torch
from diffusers.utils import load_image
from skyreels_v2_infer import DiffusionForcingPipeline
from skyreels_v2_infer.modules import download_model
from skyreels_v2_infer.pipelines import PromptEnhancer
from skyreels_v2_infer.pipelines import resizecrop
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--outdir", type=str, default="diffusion_forcing")
parser.add_argument("--model_id", type=str, default="Skywork/SkyReels-V2-DF-1.3B-540P")
parser.add_argument("--resolution", type=str, choices=["540P", "720P"])
parser.add_argument("--num_frames", type=int, default=97)
parser.add_argument("--image", type=str, default=None)
parser.add_argument("--ar_step", type=int, default=0)
parser.add_argument("--causal_attention", action="store_true")
parser.add_argument("--causal_block_size", type=int, default=1)
parser.add_argument("--base_num_frames", type=int, default=97)
parser.add_argument("--overlap_history", type=int, default=None)
parser.add_argument("--addnoise_condition", type=int, default=0)
parser.add_argument("--guidance_scale", type=float, default=6.0)
parser.add_argument("--shift", type=float, default=8.0)
parser.add_argument("--inference_steps", type=int, default=30)
parser.add_argument("--use_usp", action="store_true")
parser.add_argument("--offload", action="store_true")
parser.add_argument("--fps", type=int, default=24)
parser.add_argument("--seed", type=int, default=None)
parser.add_argument(
"--prompt",
type=str,
default="A woman in a leather jacket and sunglasses riding a vintage motorcycle through a desert highway at sunset, her hair blowing wildly in the wind as the motorcycle kicks up dust, with the golden sun casting long shadows across the barren landscape.",
)
parser.add_argument("--prompt_enhancer", action="store_true")
parser.add_argument("--teacache", action="store_true")
parser.add_argument(
"--teacache_thresh",
type=float,
default=0.2,
help="Higher speedup will cause to worse quality -- 0.1 for 2.0x speedup -- 0.2 for 3.0x speedup",
)
parser.add_argument(
"--use_ret_steps",
action="store_true",
help="Using Retention Steps will result in faster generation speed and better generation quality.",
)
args = parser.parse_args()
args.model_id = download_model(args.model_id)
print("model_id:", args.model_id)
assert (args.use_usp and args.seed is not None) or (not args.use_usp), "usp mode need seed"
if args.seed is None:
random.seed(time.time())
args.seed = int(random.randrange(4294967294))
if args.resolution == "540P":
height = 544
width = 960
elif args.resolution == "720P":
height = 720
width = 1280
else:
raise ValueError(f"Invalid resolution: {args.resolution}")
num_frames = args.num_frames
fps = args.fps
if num_frames > args.base_num_frames:
assert (
args.overlap_history is not None
), 'You are supposed to specify the "overlap_history" to support the long video generation. 17 and 37 are recommanded to set.'
if args.addnoise_condition > 60:
print(
f'You have set "addnoise_condition" as {args.addnoise_condition}. The value is too large which can cause inconsistency in long video generation. The value is recommanded to set 20.'
)
guidance_scale = args.guidance_scale
shift = args.shift
if args.image:
args.image = load_image(args.image)
image_width, image_height = args.image.size
if image_height > image_width:
height, width = width, height
args.image = resizecrop(args.image, height, width)
image = args.image.convert("RGB") if args.image else None
negative_prompt = "色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走"
save_dir = os.path.join("result", args.outdir)
os.makedirs(save_dir, exist_ok=True)
local_rank = 0
if args.use_usp:
assert (
not args.prompt_enhancer
), "`--prompt_enhancer` is not allowed if using `--use_usp`. We recommend running the skyreels_v2_infer/pipelines/prompt_enhancer.py script first to generate enhanced prompt before enabling the `--use_usp` parameter."
from xfuser.core.distributed import initialize_model_parallel, init_distributed_environment
import torch.distributed as dist
dist.init_process_group("nccl")
local_rank = dist.get_rank()
torch.cuda.set_device(dist.get_rank())
device = "cuda"
init_distributed_environment(rank=dist.get_rank(), world_size=dist.get_world_size())
initialize_model_parallel(
sequence_parallel_degree=dist.get_world_size(),
ring_degree=1,
ulysses_degree=dist.get_world_size(),
)
prompt_input = args.prompt
if args.prompt_enhancer and args.image is None:
print(f"init prompt enhancer")
prompt_enhancer = PromptEnhancer()
prompt_input = prompt_enhancer(prompt_input)
print(f"enhanced prompt: {prompt_input}")
del prompt_enhancer
gc.collect()
torch.cuda.empty_cache()
pipe = DiffusionForcingPipeline(
args.model_id,
dit_path=args.model_id,
device=torch.device("cuda"),
weight_dtype=torch.bfloat16,
use_usp=args.use_usp,
offload=args.offload,
)
if args.causal_attention:
pipe.transformer.set_ar_attention(args.causal_block_size)
if args.teacache:
if args.ar_step > 0:
num_steps = (
args.inference_steps
+ (((args.base_num_frames - 1) // 4 + 1) // args.causal_block_size - 1) * args.ar_step
)
print("num_steps:", num_steps)
else:
num_steps = args.inference_steps
pipe.transformer.initialize_teacache(
enable_teacache=True,
num_steps=num_steps,
teacache_thresh=args.teacache_thresh,
use_ret_steps=args.use_ret_steps,
ckpt_dir=args.model_id,
)
print(f"prompt:{prompt_input}")
print(f"guidance_scale:{guidance_scale}")
with torch.cuda.amp.autocast(dtype=pipe.transformer.dtype), torch.no_grad():
video_frames = pipe(
prompt=prompt_input,
negative_prompt=negative_prompt,
image=image,
height=height,
width=width,
num_frames=num_frames,
num_inference_steps=args.inference_steps,
shift=shift,
guidance_scale=guidance_scale,
generator=torch.Generator(device="cuda").manual_seed(args.seed),
overlap_history=args.overlap_history,
addnoise_condition=args.addnoise_condition,
base_num_frames=args.base_num_frames,
ar_step=args.ar_step,
causal_block_size=args.causal_block_size,
fps=fps,
)[0]
if local_rank == 0:
current_time = time.strftime("%Y-%m-%d_%H-%M-%S", time.localtime())
video_out_file = f"{args.prompt[:100].replace('/','')}_{args.seed}_{current_time}.mp4"
output_path = os.path.join(save_dir, video_out_file)
imageio.mimwrite(output_path, video_frames, fps=fps, quality=8, output_params=["-loglevel", "error"])
|