File size: 6,925 Bytes
6aef5ba
 
 
 
 
 
 
 
 
 
 
b2107ed
 
6aef5ba
 
f524066
6aef5ba
 
 
 
 
e1c09af
 
 
1e10592
e1c09af
 
 
 
 
 
 
 
 
f4f936c
 
b2107ed
6aef5ba
 
 
 
 
3577ab2
c1d97d2
6aef5ba
 
2699d44
 
6aef5ba
 
 
 
 
 
 
 
3577ab2
6aef5ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a977ff
18ba76b
4a977ff
 
6aef5ba
4a977ff
 
 
 
3dd2f88
e1d98c6
fa4bf1d
4a977ff
e1d98c6
 
4a977ff
 
3dd2f88
 
 
f709fa6
 
3d7b7a5
3dd2f88
 
 
 
 
 
3d7b7a5
3dd2f88
 
2699d44
3dd2f88
7c68120
3dd2f88
 
 
 
 
 
 
 
 
3d7b7a5
 
 
 
 
 
 
3577ab2
 
3d7b7a5
 
 
 
3577ab2
 
3d7b7a5
 
 
 
3577ab2
 
3d7b7a5
 
 
 
3577ab2
 
3d7b7a5
 
 
 
3577ab2
 
3d7b7a5
 
3577ab2
3d7b7a5
 
d409ac9
3577ab2
6aef5ba
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.

This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""

from tempfile import NamedTemporaryFile
import torch
import gradio as gr
from scipy.io.wavfile import write

from audiocraft.models import MusicGen

import os
from audiocraft.data.audio import audio_write


MODEL = None

def split_process(audio, chosen_out_track):
    os.makedirs("out", exist_ok=True)
    write('test.wav', audio[0], audio[1])
    os.system("python3 -m demucs.separate -n mdx_extra_q -j 4 test.wav -o out")
    #return "./out/mdx_extra_q/test/vocals.wav","./out/mdx_extra_q/test/bass.wav","./out/mdx_extra_q/test/drums.wav","./out/mdx_extra_q/test/other.wav"
    if chosen_out_track == "vocals":
        return "./out/mdx_extra_q/test/vocals.wav"
    elif chosen_out_track == "bass":
        return "./out/mdx_extra_q/test/bass.wav"
    elif chosen_out_track == "drums":
        return "./out/mdx_extra_q/test/drums.wav"
    elif chosen_out_track == "other":
        return "./out/mdx_extra_q/test/other.wav"
    elif chosen_out_track == "all-in":
        return "test.wav"
    
def load_model(version):
    print("Loading model", version)
    return MusicGen.get_pretrained(version)


def predict(music_prompt, melody, duration, cfg_coef):
    text = music_prompt
    global MODEL
    topk = int(250)
    if MODEL is None or MODEL.name != "melody":
        MODEL = load_model("melody")

    if duration > MODEL.lm.cfg.dataset.segment_duration:
        raise gr.Error("MusicGen currently supports durations of up to 30 seconds!")
    MODEL.set_generation_params(
        use_sampling=True,
        top_k=250,
        top_p=0,
        temperature=1.0,
        cfg_coef=cfg_coef,
        duration=duration,
    )

    if melody:
        sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t().unsqueeze(0)
        print(melody.shape)
        if melody.dim() == 2:
            melody = melody[None]
        melody = melody[..., :int(sr * MODEL.lm.cfg.dataset.segment_duration)]
        output = MODEL.generate_with_chroma(
            descriptions=[text],
            melody_wavs=melody,
            melody_sample_rate=sr,
            progress=False
        )
    else:
        output = MODEL.generate(descriptions=[text], progress=False)

    output = output.detach().cpu().float()[0]
    with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
        audio_write(file.name, output, MODEL.sample_rate, strategy="loudness", add_suffix=False)
        #waveform_video = gr.make_waveform(file.name)
    return file.name

css="""
#col-container {max-width: 910px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(
            """
            # Split Audio Tracks to MusicGen
            Upload an audio file, split audio tracks with Demucs, choose a track as conditional sound for MusicGen, get a remix ! <br/>
            *** Careful, MusicGen model loaded here can only handle up to 30 second audio, please use the audio component gradio feature to edit your audio before conditioning ***
            <br/>
            <br/>
            [![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm.svg)](https://huggingface.co/spaces/fffiloni/SplitTrack2MusicGen?duplicate=true) for longer audio, more control and no queue.</p>
            """
        )
            
        with gr.Column():
            uploaded_sound = gr.Audio(type="numpy", label="Input", source="upload")
            with gr.Row():
                chosen_track = gr.Radio(["vocals", "bass", "drums", "other", "all-in"], label="Track", info="Which track from your audio do you want to mashup ?", value="vocals")
            load_sound_btn = gr.Button('Load your chosen track')
            #split_vocals = gr.Audio(type="filepath", label="Vocals")
            #split_bass = gr.Audio(type="filepath", label="Bass")
            #split_drums = gr.Audio(type="filepath", label="Drums")
            #split_others = gr.Audio(type="filepath", label="Other")
        
        with gr.Row():
            music_prompt = gr.Textbox(label="Musical Prompt", info="Describe what kind of music you wish for", interactive=True, placeholder="lofi slow bpm electro chill with organic samples")
            melody = gr.Audio(source="upload", type="numpy", label="Track Condition (from previous step)", interactive=False)
        with gr.Row():
            #model = gr.Radio(["melody", "medium", "small", "large"], label="MusicGen Model", value="melody", interactive=True)
            duration = gr.Slider(minimum=1, maximum=30, value=10, step=1, label="Generated Music Duration", interactive=True)
            cfg_coef = gr.Slider(label="Classifier Free Guidance", minimum=1.0, maximum=10.0, step=0.1, value=3.0, interactive=True)
        with gr.Row():
            submit = gr.Button("Submit")
        #with gr.Row():
        #   topk = gr.Number(label="Top-k", value=250, interactive=True)
        #   topp = gr.Number(label="Top-p", value=0, interactive=True)
        #   temperature = gr.Number(label="Temperature", value=1.0, interactive=True)
        #   cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True)
        
        output = gr.Audio(label="Generated Music")

        gr.Examples(
            fn=predict,
            examples=[
                [
                    "An 80s driving pop song with heavy drums and synth pads in the background",
                    None,
                    10,
                    3.0
                ],
                [
                    "A cheerful country song with acoustic guitars",
                    None,
                    10,
                    3.0
                ],
                [
                    "90s rock song with electric guitar and heavy drums",
                    None,
                    10,
                    3.0
                ],
                [
                    "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130",
                    None,
                    10,
                    3.0
                ],
                [
                    "lofi slow bpm electro chill with organic samples",
                    None,
                    10,
                    3.0
                ],
            ],
            inputs=[music_prompt, melody, duration, cfg_coef],
            outputs=[output]
        )
    load_sound_btn.click(split_process, inputs=[uploaded_sound, chosen_track], outputs=[melody], api_name="splt_trck")
    submit.click(predict, inputs=[music_prompt, melody, duration, cfg_coef], outputs=[output])
    

demo.queue(max_size=32).launch()