Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	| import torch, copy | |
| from models.utils import init_weights_on_device | |
| def cast_to(weight, dtype, device): | |
| r = torch.empty_like(weight, dtype=dtype, device=device) | |
| r.copy_(weight) | |
| return r | |
| class AutoTorchModule(torch.nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| def check_free_vram(self): | |
| gpu_mem_state = torch.cuda.mem_get_info(self.computation_device) | |
| used_memory = (gpu_mem_state[1] - gpu_mem_state[0]) / (1024**3) | |
| return used_memory < self.vram_limit | |
| def offload(self): | |
| if self.state != 0: | |
| self.to(dtype=self.offload_dtype, device=self.offload_device) | |
| self.state = 0 | |
| def onload(self): | |
| if self.state != 1: | |
| self.to(dtype=self.onload_dtype, device=self.onload_device) | |
| self.state = 1 | |
| def keep(self): | |
| if self.state != 2: | |
| self.to(dtype=self.computation_dtype, device=self.computation_device) | |
| self.state = 2 | |
| class AutoWrappedModule(AutoTorchModule): | |
| def __init__( | |
| self, | |
| module: torch.nn.Module, | |
| offload_dtype, | |
| offload_device, | |
| onload_dtype, | |
| onload_device, | |
| computation_dtype, | |
| computation_device, | |
| vram_limit, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| self.module = module.to(dtype=offload_dtype, device=offload_device) | |
| self.offload_dtype = offload_dtype | |
| self.offload_device = offload_device | |
| self.onload_dtype = onload_dtype | |
| self.onload_device = onload_device | |
| self.computation_dtype = computation_dtype | |
| self.computation_device = computation_device | |
| self.vram_limit = vram_limit | |
| self.state = 0 | |
| def forward(self, *args, **kwargs): | |
| if self.state == 2: | |
| module = self.module | |
| else: | |
| if ( | |
| self.onload_dtype == self.computation_dtype | |
| and self.onload_device == self.computation_device | |
| ): | |
| module = self.module | |
| elif self.vram_limit is not None and self.check_free_vram(): | |
| self.keep() | |
| module = self.module | |
| else: | |
| module = copy.deepcopy(self.module).to( | |
| dtype=self.computation_dtype, device=self.computation_device | |
| ) | |
| return module(*args, **kwargs) | |
| class WanAutoCastLayerNorm(torch.nn.LayerNorm, AutoTorchModule): | |
| def __init__( | |
| self, | |
| module: torch.nn.LayerNorm, | |
| offload_dtype, | |
| offload_device, | |
| onload_dtype, | |
| onload_device, | |
| computation_dtype, | |
| computation_device, | |
| vram_limit, | |
| **kwargs, | |
| ): | |
| with init_weights_on_device(device=torch.device("meta")): | |
| super().__init__( | |
| module.normalized_shape, | |
| eps=module.eps, | |
| elementwise_affine=module.elementwise_affine, | |
| bias=module.bias is not None, | |
| dtype=offload_dtype, | |
| device=offload_device, | |
| ) | |
| self.weight = module.weight | |
| self.bias = module.bias | |
| self.offload_dtype = offload_dtype | |
| self.offload_device = offload_device | |
| self.onload_dtype = onload_dtype | |
| self.onload_device = onload_device | |
| self.computation_dtype = computation_dtype | |
| self.computation_device = computation_device | |
| self.vram_limit = vram_limit | |
| self.state = 0 | |
| def forward(self, x, *args, **kwargs): | |
| if self.state == 2: | |
| weight, bias = self.weight, self.bias | |
| else: | |
| if ( | |
| self.onload_dtype == self.computation_dtype | |
| and self.onload_device == self.computation_device | |
| ): | |
| weight, bias = self.weight, self.bias | |
| elif self.vram_limit is not None and self.check_free_vram(): | |
| self.keep() | |
| weight, bias = self.weight, self.bias | |
| else: | |
| weight = ( | |
| None | |
| if self.weight is None | |
| else cast_to( | |
| self.weight, self.computation_dtype, self.computation_device | |
| ) | |
| ) | |
| bias = ( | |
| None | |
| if self.bias is None | |
| else cast_to( | |
| self.bias, self.computation_dtype, self.computation_device | |
| ) | |
| ) | |
| with torch.amp.autocast(device_type=x.device.type): | |
| x = torch.nn.functional.layer_norm( | |
| x.float(), self.normalized_shape, weight, bias, self.eps | |
| ).type_as(x) | |
| return x | |
| class AutoWrappedLinear(torch.nn.Linear, AutoTorchModule): | |
| def __init__( | |
| self, | |
| module: torch.nn.Linear, | |
| offload_dtype, | |
| offload_device, | |
| onload_dtype, | |
| onload_device, | |
| computation_dtype, | |
| computation_device, | |
| vram_limit, | |
| name="", | |
| **kwargs, | |
| ): | |
| with init_weights_on_device(device=torch.device("meta")): | |
| super().__init__( | |
| in_features=module.in_features, | |
| out_features=module.out_features, | |
| bias=module.bias is not None, | |
| dtype=offload_dtype, | |
| device=offload_device, | |
| ) | |
| self.weight = module.weight | |
| self.bias = module.bias | |
| self.offload_dtype = offload_dtype | |
| self.offload_device = offload_device | |
| self.onload_dtype = onload_dtype | |
| self.onload_device = onload_device | |
| self.computation_dtype = computation_dtype | |
| self.computation_device = computation_device | |
| self.vram_limit = vram_limit | |
| self.state = 0 | |
| self.name = name | |
| self.lora_A_weights = [] | |
| self.lora_B_weights = [] | |
| self.lora_merger = None | |
| def forward(self, x, *args, **kwargs): | |
| if self.state == 2: | |
| weight, bias = self.weight, self.bias | |
| else: | |
| if ( | |
| self.onload_dtype == self.computation_dtype | |
| and self.onload_device == self.computation_device | |
| ): | |
| weight, bias = self.weight, self.bias | |
| elif self.vram_limit is not None and self.check_free_vram(): | |
| self.keep() | |
| weight, bias = self.weight, self.bias | |
| else: | |
| weight = cast_to( | |
| self.weight, self.computation_dtype, self.computation_device | |
| ) | |
| bias = ( | |
| None | |
| if self.bias is None | |
| else cast_to( | |
| self.bias, self.computation_dtype, self.computation_device | |
| ) | |
| ) | |
| out = torch.nn.functional.linear(x, weight, bias) | |
| if len(self.lora_A_weights) == 0: | |
| # No LoRA | |
| return out | |
| elif self.lora_merger is None: | |
| # Native LoRA inference | |
| for lora_A, lora_B in zip(self.lora_A_weights, self.lora_B_weights): | |
| out = out + x @ lora_A.T @ lora_B.T | |
| else: | |
| # LoRA fusion | |
| lora_output = [] | |
| for lora_A, lora_B in zip(self.lora_A_weights, self.lora_B_weights): | |
| lora_output.append(x @ lora_A.T @ lora_B.T) | |
| lora_output = torch.stack(lora_output) | |
| out = self.lora_merger(out, lora_output) | |
| return out | |
| def enable_vram_management_recursively( | |
| model: torch.nn.Module, | |
| module_map: dict, | |
| module_config: dict, | |
| max_num_param=None, | |
| overflow_module_config: dict = None, | |
| total_num_param=0, | |
| vram_limit=None, | |
| name_prefix="", | |
| ): | |
| for name, module in model.named_children(): | |
| layer_name = name if name_prefix == "" else name_prefix + "." + name | |
| for source_module, target_module in module_map.items(): | |
| if isinstance(module, source_module): | |
| num_param = sum(p.numel() for p in module.parameters()) | |
| if ( | |
| max_num_param is not None | |
| and total_num_param + num_param > max_num_param | |
| ): | |
| module_config_ = overflow_module_config | |
| else: | |
| module_config_ = module_config | |
| module_ = target_module( | |
| module, **module_config_, vram_limit=vram_limit, name=layer_name | |
| ) | |
| setattr(model, name, module_) | |
| total_num_param += num_param | |
| break | |
| else: | |
| total_num_param = enable_vram_management_recursively( | |
| module, | |
| module_map, | |
| module_config, | |
| max_num_param, | |
| overflow_module_config, | |
| total_num_param, | |
| vram_limit=vram_limit, | |
| name_prefix=layer_name, | |
| ) | |
| return total_num_param | |
| def enable_vram_management( | |
| model: torch.nn.Module, | |
| module_map: dict, | |
| module_config: dict, | |
| max_num_param=None, | |
| overflow_module_config: dict = None, | |
| vram_limit=None, | |
| ): | |
| enable_vram_management_recursively( | |
| model, | |
| module_map, | |
| module_config, | |
| max_num_param, | |
| overflow_module_config, | |
| total_num_param=0, | |
| vram_limit=vram_limit, | |
| ) | |
| model.vram_management_enabled = True | |
