Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -54,12 +54,12 @@ def resize_image(input_path, output_path, target_height):
|
|
| 54 |
|
| 55 |
return output_path
|
| 56 |
|
| 57 |
-
def infer(image_in, prompt):
|
| 58 |
-
|
| 59 |
n_prompt = 'NSFW, nude, naked, porn, ugly'
|
| 60 |
|
|
|
|
| 61 |
image_to_canny = load_image(image_in)
|
| 62 |
-
|
| 63 |
image_to_canny = np.array(image_to_canny)
|
| 64 |
image_to_canny = cv2.Canny(image_to_canny, 100, 200)
|
| 65 |
image_to_canny = image_to_canny[:, :, None]
|
|
@@ -71,38 +71,53 @@ def infer(image_in, prompt):
|
|
| 71 |
dict(
|
| 72 |
control_index=0,
|
| 73 |
control_image=image_to_canny,
|
| 74 |
-
control_weight=
|
| 75 |
control_pooled_projections='zeros'
|
| 76 |
)
|
| 77 |
]
|
|
|
|
| 78 |
# infer
|
| 79 |
image = pipe(
|
| 80 |
prompt=prompt,
|
| 81 |
negative_prompt=n_prompt,
|
| 82 |
controlnet_conditioning=controlnet_conditioning,
|
| 83 |
-
num_inference_steps=
|
| 84 |
-
guidance_scale=
|
| 85 |
-
height=1024,
|
| 86 |
-
width=1024,
|
| 87 |
).images[0]
|
| 88 |
|
| 89 |
-
return image
|
| 90 |
-
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
gr.Markdown("""
|
| 95 |
# SD3 ControlNet
|
| 96 |
""")
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
submit_btn.click(
|
| 103 |
fn = infer,
|
| 104 |
-
inputs = [image_in, prompt],
|
| 105 |
-
outputs = [result],
|
| 106 |
show_api=False
|
| 107 |
)
|
| 108 |
demo.queue().launch()
|
|
|
|
| 54 |
|
| 55 |
return output_path
|
| 56 |
|
| 57 |
+
def infer(image_in, prompt, inference_steps, guidance_scale, control_weight):
|
| 58 |
+
|
| 59 |
n_prompt = 'NSFW, nude, naked, porn, ugly'
|
| 60 |
|
| 61 |
+
# Canny preprocessing
|
| 62 |
image_to_canny = load_image(image_in)
|
|
|
|
| 63 |
image_to_canny = np.array(image_to_canny)
|
| 64 |
image_to_canny = cv2.Canny(image_to_canny, 100, 200)
|
| 65 |
image_to_canny = image_to_canny[:, :, None]
|
|
|
|
| 71 |
dict(
|
| 72 |
control_index=0,
|
| 73 |
control_image=image_to_canny,
|
| 74 |
+
control_weight=control_weight,
|
| 75 |
control_pooled_projections='zeros'
|
| 76 |
)
|
| 77 |
]
|
| 78 |
+
|
| 79 |
# infer
|
| 80 |
image = pipe(
|
| 81 |
prompt=prompt,
|
| 82 |
negative_prompt=n_prompt,
|
| 83 |
controlnet_conditioning=controlnet_conditioning,
|
| 84 |
+
num_inference_steps=inference_steps,
|
| 85 |
+
guidance_scale=guidance_scale,
|
|
|
|
|
|
|
| 86 |
).images[0]
|
| 87 |
|
| 88 |
+
return image, image_to_canny
|
|
|
|
| 89 |
|
| 90 |
+
css="""
|
| 91 |
+
#col-container{
|
| 92 |
+
margin: 0 auto;
|
| 93 |
+
max-width: 1080px;
|
| 94 |
+
}
|
| 95 |
+
"""
|
| 96 |
+
with gr.Blocks(css=css) as demo:
|
| 97 |
+
with gr.Column(elem_id="col-container"):
|
| 98 |
gr.Markdown("""
|
| 99 |
# SD3 ControlNet
|
| 100 |
""")
|
| 101 |
+
with gr.Row():
|
| 102 |
+
with gr.Column():
|
| 103 |
+
image_in = gr.Image(label="Image reference", sources=["upload"], type="filepath")
|
| 104 |
+
prompt = gr.Textbox(label="Prompt")
|
| 105 |
+
with gr.Accordion("Advanced settings", open=False):
|
| 106 |
+
with gr.Column():
|
| 107 |
+
with gr.Row():
|
| 108 |
+
inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=25)
|
| 109 |
+
guidance_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=7.0)
|
| 110 |
+
control_weight = gr.Slider(label="Control Weight", minimum=0.0, maximum=1.0, step=0.01, value=0.7)
|
| 111 |
+
|
| 112 |
+
submit_btn = gr.Button("Submit")
|
| 113 |
+
with gr.Column():
|
| 114 |
+
result = gr.Image(label="Result")
|
| 115 |
+
canny_used = gr.Image(label="Preprocessed Canny")
|
| 116 |
|
| 117 |
submit_btn.click(
|
| 118 |
fn = infer,
|
| 119 |
+
inputs = [image_in, prompt, inference_steps, guidance_scale, control_weight],
|
| 120 |
+
outputs = [result, canny_used],
|
| 121 |
show_api=False
|
| 122 |
)
|
| 123 |
demo.queue().launch()
|