from glob import glob from enum import Enum import math import subprocess import cv2 import numpy as np from tqdm import tqdm import torch import torch.nn.functional as F from Wav2Lip import audio import openvino as ov device = "cpu" def bboxlog(x1, y1, x2, y2, axc, ayc, aww, ahh): xc, yc, ww, hh = (x2 + x1) / 2, (y2 + y1) / 2, x2 - x1, y2 - y1 dx, dy = (xc - axc) / aww, (yc - ayc) / ahh dw, dh = math.log(ww / aww), math.log(hh / ahh) return dx, dy, dw, dh def bboxloginv(dx, dy, dw, dh, axc, ayc, aww, ahh): xc, yc = dx * aww + axc, dy * ahh + ayc ww, hh = math.exp(dw) * aww, math.exp(dh) * ahh x1, x2, y1, y2 = xc - ww / 2, xc + ww / 2, yc - hh / 2, yc + hh / 2 return x1, y1, x2, y2 def nms(dets, thresh): if 0 == len(dets): return [] x1, y1, x2, y2, scores = dets[:, 0], dets[:, 1], dets[:, 2], dets[:, 3], dets[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) xx1, yy1 = np.maximum(x1[i], x1[order[1:]]), np.maximum(y1[i], y1[order[1:]]) xx2, yy2 = np.minimum(x2[i], x2[order[1:]]), np.minimum(y2[i], y2[order[1:]]) w, h = np.maximum(0.0, xx2 - xx1 + 1), np.maximum(0.0, yy2 - yy1 + 1) ovr = w * h / (areas[i] + areas[order[1:]] - w * h) inds = np.where(ovr <= thresh)[0] order = order[inds + 1] return keep def encode(matched, priors, variances): """Encode the variances from the priorbox layers into the ground truth boxes we have matched (based on jaccard overlap) with the prior boxes. Args: matched: (tensor) Coords of ground truth for each prior in point-form Shape: [num_priors, 4]. priors: (tensor) Prior boxes in center-offset form Shape: [num_priors,4]. variances: (list[float]) Variances of priorboxes Return: encoded boxes (tensor), Shape: [num_priors, 4] """ # dist b/t match center and prior's center g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2 - priors[:, :2] # encode variance g_cxcy /= variances[0] * priors[:, 2:] # match wh / prior wh g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:] g_wh = torch.log(g_wh) / variances[1] # return target for smooth_l1_loss return torch.cat([g_cxcy, g_wh], 1) # [num_priors,4] def decode(loc, priors, variances): """Decode locations from predictions using priors to undo the encoding we did for offset regression at train time. Args: loc (tensor): location predictions for loc layers, Shape: [num_priors,4] priors (tensor): Prior boxes in center-offset form. Shape: [num_priors,4]. variances: (list[float]) Variances of priorboxes Return: decoded bounding box predictions """ boxes = torch.cat((priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:], priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1) boxes[:, :2] -= boxes[:, 2:] / 2 boxes[:, 2:] += boxes[:, :2] return boxes def batch_decode(loc, priors, variances): """Decode locations from predictions using priors to undo the encoding we did for offset regression at train time. Args: loc (tensor): location predictions for loc layers, Shape: [num_priors,4] priors (tensor): Prior boxes in center-offset form. Shape: [num_priors,4]. variances: (list[float]) Variances of priorboxes Return: decoded bounding box predictions """ boxes = torch.cat((priors[:, :, :2] + loc[:, :, :2] * variances[0] * priors[:, :, 2:], priors[:, :, 2:] * torch.exp(loc[:, :, 2:] * variances[1])), 2) boxes[:, :, :2] -= boxes[:, :, 2:] / 2 boxes[:, :, 2:] += boxes[:, :, :2] return boxes def get_smoothened_boxes(boxes, T): for i in range(len(boxes)): if i + T > len(boxes): window = boxes[len(boxes) - T :] else: window = boxes[i : i + T] boxes[i] = np.mean(window, axis=0) return boxes def detect(net, img, device): img = img - np.array([104, 117, 123]) img = img.transpose(2, 0, 1) img = img.reshape((1,) + img.shape) img = torch.from_numpy(img).float().to(device) BB, CC, HH, WW = img.size() results = net({"x": img}) olist = [torch.Tensor(results[i]) for i in range(12)] bboxlist = [] for i in range(len(olist) // 2): olist[i * 2] = F.softmax(olist[i * 2], dim=1) olist = [oelem.data.cpu() for oelem in olist] for i in range(len(olist) // 2): ocls, oreg = olist[i * 2], olist[i * 2 + 1] FB, FC, FH, FW = ocls.size() # feature map size stride = 2 ** (i + 2) # 4,8,16,32,64,128 anchor = stride * 4 poss = zip(*np.where(ocls[:, 1, :, :] > 0.05)) for Iindex, hindex, windex in poss: axc, ayc = stride / 2 + windex * stride, stride / 2 + hindex * stride score = ocls[0, 1, hindex, windex] loc = oreg[0, :, hindex, windex].contiguous().view(1, 4) priors = torch.Tensor([[axc / 1.0, ayc / 1.0, stride * 4 / 1.0, stride * 4 / 1.0]]) variances = [0.1, 0.2] box = decode(loc, priors, variances) x1, y1, x2, y2 = box[0] * 1.0 # cv2.rectangle(imgshow,(int(x1),int(y1)),(int(x2),int(y2)),(0,0,255),1) bboxlist.append([x1, y1, x2, y2, score]) bboxlist = np.array(bboxlist) if 0 == len(bboxlist): bboxlist = np.zeros((1, 5)) return bboxlist def batch_detect(net, imgs, device): imgs = imgs - np.array([104, 117, 123]) imgs = imgs.transpose(0, 3, 1, 2) imgs = torch.from_numpy(imgs).float().to(device) BB, CC, HH, WW = imgs.size() results = net({"x": imgs.numpy()}) olist = [torch.Tensor(results[i]) for i in range(12)] bboxlist = [] for i in range(len(olist) // 2): olist[i * 2] = F.softmax(olist[i * 2], dim=1) # olist[i * 2] = (olist[i * 2], dim=1) olist = [oelem.data.cpu() for oelem in olist] for i in range(len(olist) // 2): ocls, oreg = olist[i * 2], olist[i * 2 + 1] FB, FC, FH, FW = ocls.size() # feature map size stride = 2 ** (i + 2) # 4,8,16,32,64,128 anchor = stride * 4 poss = zip(*np.where(ocls[:, 1, :, :] > 0.05)) for Iindex, hindex, windex in poss: axc, ayc = stride / 2 + windex * stride, stride / 2 + hindex * stride score = ocls[:, 1, hindex, windex] loc = oreg[:, :, hindex, windex].contiguous().view(BB, 1, 4) priors = torch.Tensor([[axc / 1.0, ayc / 1.0, stride * 4 / 1.0, stride * 4 / 1.0]]).view(1, 1, 4) variances = [0.1, 0.2] box = batch_decode(loc, priors, variances) box = box[:, 0] * 1.0 # cv2.rectangle(imgshow,(int(x1),int(y1)),(int(x2),int(y2)),(0,0,255),1) bboxlist.append(torch.cat([box, score.unsqueeze(1)], 1).cpu().numpy()) bboxlist = np.array(bboxlist) if 0 == len(bboxlist): bboxlist = np.zeros((1, BB, 5)) return bboxlist def flip_detect(net, img, device): img = cv2.flip(img, 1) b = detect(net, img, device) bboxlist = np.zeros(b.shape) bboxlist[:, 0] = img.shape[1] - b[:, 2] bboxlist[:, 1] = b[:, 1] bboxlist[:, 2] = img.shape[1] - b[:, 0] bboxlist[:, 3] = b[:, 3] bboxlist[:, 4] = b[:, 4] return bboxlist def pts_to_bb(pts): min_x, min_y = np.min(pts, axis=0) max_x, max_y = np.max(pts, axis=0) return np.array([min_x, min_y, max_x, max_y]) class OVFaceDetector(object): """An abstract class representing a face detector. Any other face detection implementation must subclass it. All subclasses must implement ``detect_from_image``, that return a list of detected bounding boxes. Optionally, for speed considerations detect from path is recommended. """ def __init__(self, device, verbose): self.device = device self.verbose = verbose def detect_from_image(self, tensor_or_path): """Detects faces in a given image. This function detects the faces present in a provided BGR(usually) image. The input can be either the image itself or the path to it. Arguments: tensor_or_path {numpy.ndarray, torch.tensor or string} -- the path to an image or the image itself. Example:: >>> path_to_image = 'data/image_01.jpg' ... detected_faces = detect_from_image(path_to_image) [A list of bounding boxes (x1, y1, x2, y2)] >>> image = cv2.imread(path_to_image) ... detected_faces = detect_from_image(image) [A list of bounding boxes (x1, y1, x2, y2)] """ raise NotImplementedError def detect_from_directory(self, path, extensions=[".jpg", ".png"], recursive=False, show_progress_bar=True): """Detects faces from all the images present in a given directory. Arguments: path {string} -- a string containing a path that points to the folder containing the images Keyword Arguments: extensions {list} -- list of string containing the extensions to be consider in the following format: ``.extension_name`` (default: {['.jpg', '.png']}) recursive {bool} -- option wherever to scan the folder recursively (default: {False}) show_progress_bar {bool} -- display a progressbar (default: {True}) Example: >>> directory = 'data' ... detected_faces = detect_from_directory(directory) {A dictionary of [lists containing bounding boxes(x1, y1, x2, y2)]} """ if self.verbose: logger = logging.getLogger(__name__) if len(extensions) == 0: if self.verbose: logger.error("Expected at list one extension, but none was received.") raise ValueError if self.verbose: logger.info("Constructing the list of images.") additional_pattern = "/**/*" if recursive else "/*" files = [] for extension in extensions: files.extend(glob.glob(path + additional_pattern + extension, recursive=recursive)) if self.verbose: logger.info("Finished searching for images. %s images found", len(files)) logger.info("Preparing to run the detection.") predictions = {} for image_path in tqdm(files, disable=not show_progress_bar): if self.verbose: logger.info("Running the face detector on image: %s", image_path) predictions[image_path] = self.detect_from_image(image_path) if self.verbose: logger.info("The detector was successfully run on all %s images", len(files)) return predictions @property def reference_scale(self): raise NotImplementedError @property def reference_x_shift(self): raise NotImplementedError @property def reference_y_shift(self): raise NotImplementedError @staticmethod def tensor_or_path_to_ndarray(tensor_or_path, rgb=True): """Convert path (represented as a string) or torch.tensor to a numpy.ndarray Arguments: tensor_or_path {numpy.ndarray, torch.tensor or string} -- path to the image, or the image itself """ if isinstance(tensor_or_path, str): return cv2.imread(tensor_or_path) if not rgb else cv2.imread(tensor_or_path)[..., ::-1] elif torch.is_tensor(tensor_or_path): # Call cpu in case its coming from cuda return tensor_or_path.cpu().numpy()[..., ::-1].copy() if not rgb else tensor_or_path.cpu().numpy() elif isinstance(tensor_or_path, np.ndarray): return tensor_or_path[..., ::-1].copy() if not rgb else tensor_or_path else: raise TypeError class OVSFDDetector(OVFaceDetector): def __init__(self, device, path_to_detector="models/face_detection.xml", verbose=False): super(OVSFDDetector, self).__init__(device, verbose) core = ov.Core() self.face_detector = core.compile_model(path_to_detector, self.device) def detect_from_image(self, tensor_or_path): image = self.tensor_or_path_to_ndarray(tensor_or_path) bboxlist = detect(self.face_detector, image, device="cpu") keep = nms(bboxlist, 0.3) bboxlist = bboxlist[keep, :] bboxlist = [x for x in bboxlist if x[-1] > 0.5] return bboxlist def detect_from_batch(self, images): bboxlists = batch_detect(self.face_detector, images, device="cpu") keeps = [nms(bboxlists[:, i, :], 0.3) for i in range(bboxlists.shape[1])] bboxlists = [bboxlists[keep, i, :] for i, keep in enumerate(keeps)] bboxlists = [[x for x in bboxlist if x[-1] > 0.5] for bboxlist in bboxlists] return bboxlists @property def reference_scale(self): return 195 @property def reference_x_shift(self): return 0 @property def reference_y_shift(self): return 0 class LandmarksType(Enum): """Enum class defining the type of landmarks to detect. ``_2D`` - the detected points ``(x,y)`` are detected in a 2D space and follow the visible contour of the face ``_2halfD`` - this points represent the projection of the 3D points into 3D ``_3D`` - detect the points ``(x,y,z)``` in a 3D space """ _2D = 1 _2halfD = 2 _3D = 3 class NetworkSize(Enum): # TINY = 1 # SMALL = 2 # MEDIUM = 3 LARGE = 4 def __new__(cls, value): member = object.__new__(cls) member._value_ = value return member def __int__(self): return self.value class OVFaceAlignment: def __init__( self, landmarks_type, network_size=NetworkSize.LARGE, device="CPU", flip_input=False, verbose=False, path_to_detector="models/face_detection.xml" ): self.device = device self.flip_input = flip_input self.landmarks_type = landmarks_type self.verbose = verbose network_size = int(network_size) self.face_detector = OVSFDDetector(device=device, path_to_detector=path_to_detector, verbose=verbose) def get_detections_for_batch(self, images): images = images[..., ::-1] detected_faces = self.face_detector.detect_from_batch(images.copy()) results = [] for i, d in enumerate(detected_faces): if len(d) == 0: results.append(None) continue d = d[0] d = np.clip(d, 0, None) x1, y1, x2, y2 = map(int, d[:-1]) results.append((x1, y1, x2, y2)) return results def face_detect_ov(images, device, face_det_batch_size, pads, nosmooth, path_to_detector): detector = OVFaceAlignment(LandmarksType._2D, flip_input=False, device=device, path_to_detector=path_to_detector) batch_size = face_det_batch_size print("face_detect_ov images[0].shape: ", images[0].shape) while 1: predictions = [] try: for i in tqdm(range(0, len(images), batch_size)): predictions.extend(detector.get_detections_for_batch(np.array(images[i : i + batch_size]))) except RuntimeError: if batch_size == 1: raise RuntimeError("Image too big to run face detection on GPU. Please use the --resize_factor argument") batch_size //= 2 print("Recovering from OOM error; New batch size: {}".format(batch_size)) continue break results = [] pady1, pady2, padx1, padx2 = pads for rect, image in zip(predictions, images): if rect is None: # check this frame where the face was not detected. cv2.imwrite("temp/faulty_frame.jpg", image) raise ValueError("Face not detected! Ensure the video contains a face in all the frames.") y1 = max(0, rect[1] - pady1) y2 = min(image.shape[0], rect[3] + pady2) x1 = max(0, rect[0] - padx1) x2 = min(image.shape[1], rect[2] + padx2) results.append([x1, y1, x2, y2]) boxes = np.array(results) if not nosmooth: boxes = get_smoothened_boxes(boxes, T=5) results = [[image[y1:y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)] del detector return results def datagen(frames, mels, box, static, face_det_batch_size, pads, nosmooth, img_size, wav2lip_batch_size, path_to_detector): img_batch, mel_batch, frame_batch, coords_batch = [], [], [], [] if box[0] == -1: if not static: # BGR2RGB for CNN face detection face_det_results = face_detect_ov(frames, "CPU", face_det_batch_size, pads, nosmooth, path_to_detector) else: face_det_results = face_detect_ov([frames[0]], "CPU", face_det_batch_size, pads, nosmooth, path_to_detector) else: print("Using the specified bounding box instead of face detection...") y1, y2, x1, x2 = box face_det_results = [[f[y1:y2, x1:x2], (y1, y2, x1, x2)] for f in frames] for i, m in enumerate(mels): idx = 0 if static else i % len(frames) frame_to_save = frames[idx].copy() face, coords = face_det_results[idx].copy() face = cv2.resize(face, (img_size, img_size)) img_batch.append(face) mel_batch.append(m) frame_batch.append(frame_to_save) coords_batch.append(coords) if len(img_batch) >= wav2lip_batch_size: img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch) img_masked = img_batch.copy() img_masked[:, img_size // 2 :] = 0 img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.0 mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]) yield img_batch, mel_batch, frame_batch, coords_batch img_batch, mel_batch, frame_batch, coords_batch = [], [], [], [] if len(img_batch) > 0: img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch) img_masked = img_batch.copy() img_masked[:, img_size // 2 :] = 0 img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.0 mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]) yield img_batch, mel_batch, frame_batch, coords_batch def ov_inference( face_path, audio_path, face_detection_path="models/face_detection.xml", wav2lip_path="models/wav2lip.xml", inference_device="CPU", wav2lip_batch_size=128, outfile="results/result_voice.mp4", resize_factor=1, rotate=False, crop=[0, -1, 0, -1], mel_step_size=16, box=[-1, -1, -1, -1], static=False, img_size=96, face_det_batch_size=16, pads=[0, 10, 0, 0], nosmooth=False, ): print("Reading video frames...") video_stream = cv2.VideoCapture(face_path) fps = video_stream.get(cv2.CAP_PROP_FPS) full_frames = [] while 1: still_reading, frame = video_stream.read() if not still_reading: video_stream.release() break if resize_factor > 1: frame = cv2.resize(frame, (frame.shape[1] // resize_factor, frame.shape[0] // resize_factor)) if rotate: frame = cv2.rotate(frame, cv2.cv2.ROTATE_90_CLOCKWISE) y1, y2, x1, x2 = crop if x2 == -1: x2 = frame.shape[1] if y2 == -1: y2 = frame.shape[0] frame = frame[y1:y2, x1:x2] full_frames.append(frame) print("Number of frames available for inference: " + str(len(full_frames))) core = ov.Core() if not audio_path.endswith(".wav"): print("Extracting raw audio...") command = "ffmpeg -y -i {} -strict -2 {}".format(audio_path, "temp/temp.wav") subprocess.call(command, shell=True) audio_path = "temp/temp.wav" wav = audio.load_wav(audio_path, 16000) mel = audio.melspectrogram(wav) print(mel.shape) if np.isnan(mel.reshape(-1)).sum() > 0: raise ValueError("Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again") mel_chunks = [] mel_idx_multiplier = 80.0 / fps i = 0 while 1: start_idx = int(i * mel_idx_multiplier) if start_idx + mel_step_size > len(mel[0]): mel_chunks.append(mel[:, len(mel[0]) - mel_step_size :]) break mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size]) i += 1 print("Length of mel chunks: {}".format(len(mel_chunks))) full_frames = full_frames[: len(mel_chunks)] batch_size = wav2lip_batch_size gen = datagen(full_frames.copy(), mel_chunks, box, static, face_det_batch_size, pads, nosmooth, img_size, wav2lip_batch_size, face_detection_path) for i, (img_batch, mel_batch, frames, coords) in enumerate(tqdm(gen, total=int(np.ceil(float(len(mel_chunks)) / batch_size)))): if i == 0: img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device) mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device) compiled_wav2lip_model = core.compile_model(wav2lip_path, inference_device) print("Model loaded") frame_h, frame_w = full_frames[0].shape[:-1] out = cv2.VideoWriter("C:/programacionEjercicios/miwav2lipv6/src/Wav2Lip/temp/result.avi", cv2.VideoWriter_fourcc(*"DIVX"), fps, (frame_w, frame_h)) pred_ov = compiled_wav2lip_model({"audio_sequences": mel_batch.numpy(), "face_sequences": img_batch.numpy()})[0] else: img_batch = np.transpose(img_batch, (0, 3, 1, 2)) mel_batch = np.transpose(mel_batch, (0, 3, 1, 2)) pred_ov = compiled_wav2lip_model({"audio_sequences": mel_batch, "face_sequences": img_batch})[0] pred_ov = compiled_wav2lip_model({"audio_sequences": mel_batch, "face_sequences": img_batch})[0] pred_ov = pred_ov.transpose(0, 2, 3, 1) * 255.0 for p, f, c in zip(pred_ov, frames, coords): y1, y2, x1, x2 = c p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1)) f[y1:y2, x1:x2] = p out.write(f) out.release() command = "ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}".format(audio_path, "C:/programacionEjercicios/miwav2lipv6/src/Wav2Lip/temp/result.avi", outfile) subprocess.call(command, shell=True) return outfile