Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,35 +1,29 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
| 3 |
-
from skimage.io import imread
|
| 4 |
from skimage.transform import resize
|
|
|
|
| 5 |
import numpy as np
|
| 6 |
|
| 7 |
-
|
| 8 |
-
classifier = KNeighborsClassifier(n_neighbors=5)
|
| 9 |
-
# Cargar el conjunto de datos o modelo pre-entrenado
|
| 10 |
-
# Por ejemplo, puedes cargar el mismo conjunto de datos de d铆gitos que usaste en tu c贸digo original o uno similar.
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
user_image = imread(image)
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
|
|
|
| 22 |
|
| 23 |
-
|
|
|
|
| 24 |
|
| 25 |
-
# Crea una interfaz de Gradio
|
| 26 |
iface = gr.Interface(
|
| 27 |
-
fn=
|
| 28 |
-
inputs="image",
|
| 29 |
-
outputs="text"
|
| 30 |
-
title="Clasificador KNN de D铆gitos",
|
| 31 |
-
description="Sube una imagen de un d铆gito (8x8 p铆xeles) y predice el n煤mero."
|
| 32 |
)
|
| 33 |
|
| 34 |
-
|
| 35 |
-
iface.launch(debug = True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from joblib import load
|
|
|
|
| 3 |
from skimage.transform import resize
|
| 4 |
+
from skimage.color import rgb2gray
|
| 5 |
import numpy as np
|
| 6 |
|
| 7 |
+
classifier = load('knn_classifier.joblib')
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
def predict_image(image):
|
| 10 |
+
if len(image.shape) == 3:
|
| 11 |
+
image = rgb2gray(image)
|
|
|
|
| 12 |
|
| 13 |
+
image = resize(image, (8,8),anti_aliasing=True, mode='reflect') #Redimensionamiento
|
| 14 |
+
image = (image * 255).astype(np.uint8)
|
| 15 |
|
| 16 |
+
#image = np.array(image, dtype = np.float64)
|
| 17 |
+
image = np.invert(image)
|
| 18 |
+
image = image.reshape(1,-1)
|
| 19 |
|
| 20 |
+
prediction = classifier.predict(image)
|
| 21 |
+
return prediction[0]
|
| 22 |
|
|
|
|
| 23 |
iface = gr.Interface(
|
| 24 |
+
fn = predict_image,
|
| 25 |
+
inputs = "image",
|
| 26 |
+
outputs = "text"
|
|
|
|
|
|
|
| 27 |
)
|
| 28 |
|
| 29 |
+
iface.launch(debug=True)
|
|
|