Spaces:
Running
Running
File size: 10,993 Bytes
8cc0920 001487b 8cc0920 3a65210 8cc0920 001487b 3a65210 8cc0920 3a65210 8cc0920 3a65210 8cc0920 001487b 8cc0920 3a65210 8cc0920 3a65210 8cc0920 001487b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
from fireworks import LLM
from pydantic import BaseModel
import asyncio
import json
import time
from typing import Dict, Any, List
from gradio import ChatMessage
MODELS = {
"small": "accounts/fireworks/models/qwen3-235b-a22b-instruct-2507",
"large": "accounts/fireworks/models/kimi-k2-instruct"
}
TODAY = time.strftime("%Y-%m-%d")
semaphore = asyncio.Semaphore(10)
def get_llm(model: str, api_key: str) -> LLM:
return LLM(model=MODELS[model], api_key=api_key, deployment_type="serverless")
async def get_llm_completion(llm: LLM, prompt_text: str, output_class: BaseModel = None) -> str:
if output_class:
return llm.chat.completions.create(
messages=[
{
"role": "user",
"content": prompt_text
},
],
temperature=0.1,
response_format={
"type": "json_object",
"schema": output_class.model_json_schema(),
},
)
return llm.chat.completions.create(
messages=[
{
"role": "user",
"content": prompt_text
},
],
temperature=0.1
)
async def get_streaming_completion(llm: LLM, prompt_text: str, system_prompt: str = None):
"""
Get streaming completion from LLM for real-time responses
:param llm: The LLM instance
:param prompt_text: The user's input message
:param system_prompt: Optional system prompt for context
:return: Generator yielding response chunks
"""
messages = []
if system_prompt:
messages.append({
"role": "system",
"content": system_prompt
})
messages.append({
"role": "user",
"content": prompt_text
})
try:
response = llm.chat.completions.create(
messages=messages,
temperature=0.2,
stream=True,
max_tokens=1000
)
for chunk in response:
if chunk.choices[0].delta.content:
yield chunk.choices[0].delta.content
except Exception as e:
yield f"Error generating response: {str(e)}"
async def run_multi_llm_completions(llm: LLM, prompts: list[str], output_class: BaseModel) -> list[str]:
"""
Run multiple LLM completions in parallel
:param llm:
:param prompts:
:param output_class:
:return:
"""
async with semaphore:
if output_class:
print(f"Running LLM with structured outputs")
tasks = [
asyncio.create_task(
get_llm_completion(llm=llm, prompt_text=prompt, output_class=output_class)
) for prompt in prompts
]
else:
print(f"Running LLM with non-structured outputs")
tasks = [
asyncio.create_task(
get_llm_completion(llm=llm, prompt_text=prompt)
) for prompt in prompts
]
return await asyncio.gather(*tasks)
def get_orchestrator_decision(user_query: str, api_key: str, prompt_library: Dict[str, str]) -> Dict[str, Any]:
"""Use orchestrator LLM to decide which tools to use"""
try:
orchestrator_prompt = prompt_library.get('fed_orchestrator', '')
formatted_prompt = orchestrator_prompt.format(user_query=user_query, date=TODAY)
llm = get_llm("large", api_key)
response = llm.chat.completions.create(
messages=[
{"role": "system", "content": "You are a tool orchestrator. Always respond with valid JSON."},
{"role": "user", "content": formatted_prompt}
],
temperature=0.1,
max_tokens=500
)
# Parse JSON response
result = json.loads(response.choices[0].message.content)
return {"success": True, "decision": result}
except Exception as e:
print(f"Error in orchestrator: {e}")
# Fallback to simple logic
return {
"success": False,
"decision": {
"tools_needed": [{"function": "get_latest_meeting", "parameters": {}, "reasoning": "Fallback to latest meeting"}],
"query_analysis": f"Error occurred, using fallback for: {user_query}"
}
}
def execute_fed_tools(tools_decision: Dict[str, Any], fed_tools: Dict[str, callable]) -> List[Dict[str, Any]]:
"""Execute the tools determined by the orchestrator"""
results = []
for tool in tools_decision.get("tools_needed", []):
function_name = tool.get("function", "")
parameters = tool.get("parameters", {})
reasoning = tool.get("reasoning", "")
start_time = time.time()
try:
# Execute the appropriate function
if function_name in fed_tools:
tool_func = fed_tools[function_name]
result = tool_func(**parameters)
else:
result = {"success": False, "error": f"Unknown function: {function_name}"}
execution_time = time.time() - start_time
results.append({
"function": function_name,
"parameters": parameters,
"reasoning": reasoning,
"result": result,
"execution_time": execution_time,
"success": result.get("success", False)
})
except Exception as e:
execution_time = time.time() - start_time
results.append({
"function": function_name,
"parameters": parameters,
"reasoning": reasoning,
"result": {"success": False, "error": str(e)},
"execution_time": execution_time,
"success": False
})
return results
def stream_fed_agent_response(
message: str,
api_key: str,
prompt_library: Dict[str, str],
fed_tools: Dict[str, callable]
):
"""Main orchestrator function that coordinates tools and generates responses with ChatMessage objects"""
if not message.strip():
yield [ChatMessage(role="assistant", content="Please enter a question about Federal Reserve policy or FOMC meetings.")]
return
if not api_key.strip():
yield [ChatMessage(role="assistant", content="β Please set your FIREWORKS_API_KEY environment variable.")]
return
messages = []
try:
# Step 1: Use orchestrator to determine tools needed
messages.append(ChatMessage(
role="assistant",
content="Analyzing your query...",
metadata={"title": "π§ Planning", "status": "pending"}
))
yield messages
orchestrator_result = get_orchestrator_decision(message, api_key, prompt_library)
tools_decision = orchestrator_result["decision"]
# Update planning message
messages[0] = ChatMessage(
role="assistant",
content=f"Query Analysis: {tools_decision.get('query_analysis', 'Analyzing Fed data requirements')}\n\nTools needed: {len(tools_decision.get('tools_needed', []))}",
metadata={"title": "π§ Planning", "status": "done"}
)
yield messages
# Step 2: Execute the determined tools
if tools_decision.get("tools_needed"):
for i, tool in enumerate(tools_decision["tools_needed"]):
tool_msg = ChatMessage(
role="assistant",
content=f"Executing: {tool['function']}({', '.join([f'{k}={v}' for k, v in tool['parameters'].items()])})\n\nReasoning: {tool['reasoning']}",
metadata={"title": f"π§ Tool {i+1}: {tool['function']}", "status": "pending"}
)
messages.append(tool_msg)
yield messages
# Execute all tools
tool_results = execute_fed_tools(tools_decision, fed_tools)
# Update tool messages with results
for i, (tool_result, tool_msg) in enumerate(zip(tool_results, messages[1:])):
execution_time = tool_result["execution_time"]
success_status = "β
" if tool_result["success"] else "β"
messages[i+1] = ChatMessage(
role="assistant",
content=f"{success_status} {tool_result['function']} completed\n\nExecution time: {execution_time:.2f}s\n\nResult summary: {str(tool_result['result'])[:200]}...",
metadata={"title": f"π§ Tool {i+1}: {tool_result['function']}", "status": "done", "duration": execution_time}
)
yield messages
# Step 3: Use results to generate final response
combined_context = ""
for result in tool_results:
if result["success"]:
combined_context += f"\n\nFrom {result['function']}: {json.dumps(result['result'], indent=2)}"
# Generate Fed Savant response using tool results
system_prompt_template = prompt_library.get('fed_savant_chat', '')
system_prompt = system_prompt_template.format(
fed_data_context=combined_context,
user_question=message,
date=TODAY
)
# Initialize LLM and get streaming response
llm = get_llm("large", api_key)
final_response = ""
for chunk in llm.chat.completions.create(
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": message}
],
temperature=0.2,
stream=True,
max_tokens=1000
):
if chunk.choices[0].delta.content:
final_response += chunk.choices[0].delta.content
# Update messages list with current response
if len(messages) > len(tool_results):
messages[-1] = ChatMessage(role="assistant", content=final_response)
else:
messages.append(ChatMessage(role="assistant", content=final_response))
yield messages
else:
# No tools needed, direct response
messages.append(ChatMessage(role="assistant", content="No specific tools required. Providing general Fed information."))
yield messages
except Exception as e:
messages.append(ChatMessage(role="assistant", content=f"Error generating response: {str(e)}"))
yield messages
|