RobertoBarrosoLuque
Add chat, orchestrator and tool use
001487b
raw
history blame
22 kB
import gradio as gr
import json
from datetime import datetime
from typing import List, Dict, Any
import random
import os
import yaml
from dotenv import load_dotenv
from pathlib import Path
from src.modules.fed_tools import search_meetings, get_rate_decision, compare_meetings, get_latest_meeting
from src.modules.llm_completions import get_llm, stream_fed_agent_response
from gradio import ChatMessage
import time
load_dotenv()
_FILE_PATH = Path(__file__).parents[1]
# Load processed FOMC meetings data
def load_processed_meetings():
"""Load processed FOMC meetings from JSON file"""
try:
processed_file = _FILE_PATH / "data" / "fed_processed_meetings.json"
with open(processed_file, 'r', encoding='utf-8') as f:
data = json.load(f)
# Transform to match expected format for the frontend
meetings = []
for meeting in data:
meetings.append({
"date": meeting.get("date", ""),
"title": meeting.get("title", ""),
"rate_decision": meeting.get("rate", ""),
"summary": meeting.get("forward_guidance", ""), # Show full text
"action": meeting.get("action", ""),
"magnitude": meeting.get("magnitude", ""),
"key_economic_factors": meeting.get("key_economic_factors", []),
"economic_outlook": meeting.get("economic_outlook", ""),
"market_impact": meeting.get("market_impact", ""),
"full_text": meeting.get("full_text", "")[:500] + "..." if meeting.get("full_text") else "",
"url": meeting.get("url", "")
})
return meetings
except FileNotFoundError:
print("Fed processed meetings file not found. Using fallback data.")
return [
{
"date": "2025-06-18",
"title": "FOMC Meeting 2025-06-18",
"rate_decision": "4.25%-4.50%",
"summary": "No processed data available. Please run the data pipeline first.",
"action": "Unknown",
"magnitude": "Unknown",
"key_economic_factors": [],
"economic_outlook": "Data not available",
"market_impact": "Data not available",
"full_text": "No data available",
"url": ""
}
]
except Exception as e:
print(f"Error loading processed meetings: {e}")
return []
# Load the processed meetings
FOMC_MEETINGS = load_processed_meetings()
def load_prompt_library():
"""Load prompts from the YAML library"""
try:
prompt_file = _FILE_PATH / "configs" / "prompt_library.yaml"
with open(prompt_file, 'r', encoding='utf-8') as f:
return yaml.safe_load(f)
except Exception as e:
print(f"Error loading prompt library: {e}")
return {}
# Load prompt library
PROMPT_LIBRARY = load_prompt_library()
def get_fed_context_for_query(user_message: str) -> str:
"""Get relevant Fed data context for the user's query"""
message_lower = user_message.lower()
# Get relevant meeting data based on query type
if 'latest' in message_lower or 'most recent' in message_lower:
result = get_latest_meeting()
if result["success"]:
meeting = result["meeting"]
return f"Latest FOMC Meeting ({meeting.get('date', 'unknown')}): {meeting.get('forward_guidance', '')[:300]}..."
elif any(word in message_lower for word in ['search', 'find', 'about']):
search_query = user_message.replace('search for', '').replace('find', '').replace('about', '').strip()
result = search_meetings(search_query, limit=2)
if result["success"] and result["count"] > 0:
context = f"Relevant FOMC meetings for '{search_query}':\n"
for meeting in result["results"][:2]:
context += f"- {meeting.get('date', 'unknown')}: {meeting.get('forward_guidance', '')[:200]}...\n"
return context
# Default: return latest meeting info
result = get_latest_meeting()
if result["success"]:
meeting = result["meeting"]
return f"Current Fed Policy Context: Rate at {meeting.get('rate', 'unknown')}, {meeting.get('action', 'maintained')} in latest meeting ({meeting.get('date', 'unknown')})"
return "Fed data context not available. Please ensure the data pipeline has been run."
def process_fed_query(user_message: str, selected_model: str = "") -> Dict[str, Any]:
"""Process user queries using Fed AI tools"""
message_lower = user_message.lower()
# Determine which function to call and execute it
if 'latest' in message_lower or 'most recent' in message_lower or 'last meeting' in message_lower:
# Get latest meeting
result = get_latest_meeting()
if result["success"]:
meeting = result["meeting"]
return {
"function": "get_latest_meeting",
"reasoning": [
"User asked for the latest/most recent meeting",
"Retrieved the most recent FOMC meeting from database",
f"Found meeting from {meeting.get('date', 'unknown date')}"
],
"result": f"The most recent FOMC meeting was on {meeting.get('date', 'unknown date')}. The Fed {meeting.get('action', 'took action')} with rates at {meeting.get('rate', 'unknown rate')}. {meeting.get('forward_guidance', '')[:200]}...",
"confidence": 0.95,
"sources": [f"FOMC Minutes {meeting.get('date', 'unknown date')}"],
"raw_data": result
}
else:
return {
"function": "get_latest_meeting",
"reasoning": ["Attempted to retrieve latest meeting", "No meeting data available"],
"result": "Sorry, I couldn't retrieve the latest FOMC meeting data.",
"confidence": 0.0,
"sources": [],
"raw_data": result
}
elif 'compare' in message_lower and ('vs' in message_lower or 'versus' in message_lower or 'with' in message_lower):
# For now, compare with a default example since we'd need date extraction logic
result = compare_meetings("2025-06-18", "2025-06-18") # This will need proper date extraction
return {
"function": "compare_meetings",
"reasoning": [
"User wants to compare different FOMC meetings",
"Extracting dates from user message",
"Performing side-by-side comparison"
],
"result": "To compare meetings, please specify the exact dates (YYYY-MM-DD format). For example: 'Compare 2025-06-18 vs 2025-03-20'",
"confidence": 0.6,
"sources": [],
"raw_data": result
}
elif any(word in message_lower for word in ['search', 'find', 'about']) or '?' in user_message:
# Search for relevant information
search_query = user_message.replace('search for', '').replace('find', '').replace('about', '').strip()
result =search_meetings(search_query, limit=2)
if result["success"] and result["count"] > 0:
meetings_found = result["results"]
summary = f"Found {result['count']} relevant meetings for '{search_query}'. "
for i, meeting in enumerate(meetings_found[:2], 1):
summary += f"Meeting {i} ({meeting.get('date', 'unknown date')}): {meeting.get('forward_guidance', '')[:100]}... "
return {
"function": "search_meetings",
"reasoning": [
f"User searched for information about '{search_query}'",
f"Searched across all FOMC meeting fields",
f"Found {result['count']} relevant meetings"
],
"result": summary,
"confidence": 0.85,
"sources": [f"FOMC Minutes {m.get('date', 'unknown date')}" for m in meetings_found],
"raw_data": result
}
else:
return {
"function": "search_meetings",
"reasoning": [
f"Searched for '{search_query}'",
"No relevant meetings found"
],
"result": f"I couldn't find specific information about '{search_query}' in the available FOMC meetings.",
"confidence": 0.3,
"sources": [],
"raw_data": result
}
else:
# Default: get latest meeting info
result = get_latest_meeting()
if result["success"]:
meeting = result["meeting"]
return {
"function": "general_analysis",
"reasoning": [
"Providing general Fed policy information",
"Drawing from most recent FOMC meeting",
"Contextualizing current monetary policy stance"
],
"result": f"Based on the most recent FOMC meeting ({meeting.get('date', 'unknown date')}), the Fed {meeting.get('action', 'maintained')} rates at {meeting.get('rate', 'current levels')}. Key factors include: {', '.join(meeting.get('key_economic_factors', ['economic conditions'])[:3])}.",
"confidence": 0.78,
"sources": [f"FOMC Minutes {meeting.get('date', 'unknown date')}"],
"raw_data": result
}
else:
return {
"function": "general_analysis",
"reasoning": ["No meeting data available"],
"result": "I don't have access to current FOMC meeting data. Please ensure the data pipeline has been run.",
"confidence": 0.0,
"sources": [],
"raw_data": result
}
def format_response_with_reasoning(function_result: Dict[str, Any], model_name: str) -> str:
"""Format the response with expandable reasoning sections"""
reasoning_steps = "\n".join([f"β€’ {step}" for step in function_result["reasoning"]])
response = f"""
**πŸ” Function Called:** `{function_result["function"]}`
**πŸ€– Model Used:** {model_name}
**πŸ“Š Confidence:** {function_result["confidence"]:.0%}
**πŸ’‘ Analysis Result:**
{function_result["result"]}
<details>
<summary><b>🧠 Reasoning Chain (Click to expand)</b></summary>
{reasoning_steps}
**πŸ“š Sources:**
{chr(10).join([f"β€’ {source}" for source in function_result["sources"]])}
</details>
"""
return response
def respond_for_chat_interface(message: str, history):
"""Enhanced response function for gr.ChatInterface with Fed AI Savant capabilities"""
# Get API key from environment or return error
api_key = os.getenv("FIREWORKS_API_KEY", "")
# Create Fed tools dictionary
fed_tools = {
"search_meetings": search_meetings,
"get_latest_meeting": get_latest_meeting,
"get_rate_decision": get_rate_decision,
"compare_meetings": compare_meetings
}
# Use the new orchestrator function
for messages in stream_fed_agent_response(message, api_key, PROMPT_LIBRARY, fed_tools):
yield messages
def get_fomc_meetings_sidebar():
"""Generate sidebar content with FOMC meeting details"""
sidebar_content = "## πŸ“‹ Recent FOMC Meetings\n\n"
for meeting in FOMC_MEETINGS:
sidebar_content += f"""
**{meeting['date']}**
*{meeting['title'][:50]}...*
- **Rate:** {meeting['rate_decision']}
- **Summary:** {meeting['summary'][:100]}...
---
"""
return sidebar_content
def process_audio_input(audio_file):
"""Process audio input and convert to text"""
if audio_file is None:
return "No audio recorded. Please try again."
# Simulate speech-to-text conversion
# In a real implementation, you'd use libraries like openai-whisper, speech_recognition, etc.
simulated_transcripts = [
"What was the federal funds rate decision in the last meeting?",
"Compare the June and July FOMC meetings",
"Tell me about inflation expectations",
"What factors influenced recent policy decisions?",
"Has the Fed's employment stance changed?"
]
import random
return random.choice(simulated_transcripts)
def text_to_speech(text):
"""Convert text response to speech"""
# Simulate text-to-speech functionality
# In a real implementation, you'd use libraries like pyttsx3, gTTS, or cloud TTS services
# Clean the text for better TTS (remove markdown formatting)
import re
clean_text = re.sub(r'\*\*.*?\*\*', '', text) # Remove bold markdown
clean_text = re.sub(r'`.*?`', '', clean_text) # Remove code formatting
clean_text = re.sub(r'<.*?>', '', clean_text) # Remove HTML tags
clean_text = re.sub(r'[#β€’]', '', clean_text) # Remove special characters
clean_text = ' '.join(clean_text.split()) # Clean whitespace
# For demo purposes, return a message about TTS
return f"πŸ”Š Text-to-Speech: Would read aloud the response (length: {len(clean_text)} characters)"
# Custom CSS for better styling
custom_css = """
.gradio-container {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.chat-message {
border-radius: 10px;
padding: 10px;
margin: 5px 0;
}
.function-call {
background-color: #f0f8ff;
border-left: 4px solid #1e88e5;
padding: 10px;
margin: 10px 0;
border-radius: 5px;
}
"""
# Model options for dropdown
MODEL_OPTIONS = [
"Claude 3.5 Sonnet",
"GPT-4 Turbo",
"Llama 3.1 70B",
"Gemini Pro 1.5",
"Mixtral 8x7B"
]
# Function to create searchable FOMC meetings accordion
def create_fomc_meetings_accordion():
"""Create searchable accordion for FOMC meetings"""
accordions = []
for meeting in FOMC_MEETINGS:
title = f"{meeting['date']} - Rate: {meeting['rate_decision']}"
content = f"""
**Meeting Title:** {meeting['title']}
**Rate Decision:** {meeting['rate_decision']}
**Summary:** {meeting['summary']}
---
*Click to expand for full meeting details*
"""
accordions.append((title, content))
return accordions
# Create the enhanced interface
with gr.Blocks(css=custom_css, title="Fed AI Savant", theme=gr.themes.Soft()) as demo:
# Row 1: Title and Description
with gr.Row():
with gr.Column():
gr.Markdown("""
# πŸ›οΈ Fed AI Savant πŸ›οΈ
**Intelligent Analysis of Federal Reserve Policy and FOMC Meetings**
Ask questions about interest rate decisions, monetary policy changes, and economic analysis based on Federal Reserve meeting minutes.
""")
# Row 2: API Key Configuration
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Powered by")
gr.Image(
value=str(_FILE_PATH / "assets" / "fireworks_logo.png"),
height=60,
width=200,
show_label=False,
show_download_button=False,
container=False,
show_fullscreen_button=False,
show_share_button=False,
)
with gr.Column(scale=1):
gr.Markdown("### πŸ”‘ Configuration")
api_key = gr.Textbox(
label="AI API Key",
type="password",
placeholder="Please enter your FireworksAI API key",
value=os.getenv("FIREWORKS_API_KEY", ""),
)
with gr.Column(scale=2):
gr.Markdown("### πŸ“‹ How to Use")
gr.Markdown("""
1. **Enter your AI API key** (OpenAI, Anthropic, etc.)
2. **Ask questions** about Fed policy, rate decisions, or FOMC meetings
3. **Review AI reasoning** with expandable explanations and sources
4. **Use voice input** by clicking the microphone button
""")
# Row 3: FOMC Meetings Accordion (Searchable by Date)
with gr.Row():
with gr.Column():
gr.Markdown("### πŸ“Š Recent FOMC Meeting Minutes")
# Date search
date_search = gr.Textbox(
placeholder="Search by date (e.g., 2024-07, July 2024)...",
label="πŸ” Search Meetings by Date",
lines=1
)
with gr.Accordion("FOMC Meetings", open=False):
# Dynamic HTML generation for meetings
def generate_meetings_html(meetings_list):
"""Generate HTML for meetings list"""
if not meetings_list:
return '<p style="color: #6b7280; text-align: center; padding: 20px;">No meetings available</p>'
html_content = '<div style="space-y: 8px;">'
for meeting in meetings_list:
# Format key economic factors for display (show all factors)
factors_html = ""
if meeting.get('key_economic_factors') and len(meeting['key_economic_factors']) > 0:
factors_html = "<p><strong>Key Factors:</strong></p><ul>"
for factor in meeting['key_economic_factors']: # Show all factors
factors_html += f"<li>{factor}</li>"
factors_html += "</ul>"
html_content += f"""
<details style="border: 1px solid #e5e7eb; border-radius: 6px; padding: 12px; margin-bottom: 8px;">
<summary style="font-weight: 600; cursor: pointer; color: #1f2937;">
πŸ“… {meeting['date']} - Rate: {meeting['rate_decision']}
</summary>
<div style="margin-top: 12px; padding-top: 12px; border-top: 1px solid #e5e7eb;">
<p><strong>Meeting:</strong> {meeting['title']}</p>
<p><strong>Action:</strong> {meeting.get('action', 'N/A')}</p>
<p><strong>Rate:</strong> {meeting['rate_decision']}</p>
<p><strong>Magnitude:</strong> {meeting.get('magnitude', 'N/A')}</p>
<p><strong>Forward Guidance:</strong> {meeting['summary']}</p>
{factors_html}
<p><strong>Economic Outlook:</strong> {meeting.get('economic_outlook', 'N/A')}</p>
<p><strong>Market Impact:</strong> {meeting.get('market_impact', 'N/A')}</p>
{f'<p><strong>Source:</strong> <a href="{meeting["url"]}" target="_blank">Fed Minutes PDF</a></p>' if meeting.get('url') else ''}
</div>
</details>
"""
html_content += '</div>'
return html_content
meetings_accordion = gr.HTML(generate_meetings_html(FOMC_MEETINGS))
# Row 4: Chat Interface using gr.ChatInterface
with gr.Row():
with gr.Column():
gr.Markdown("### πŸ’¬ Fed AI Assistant")
chat_interface = gr.ChatInterface(
fn=respond_for_chat_interface,
type="messages",
chatbot=gr.Chatbot(height=500, show_label=False),
textbox=gr.Textbox(placeholder="Ask about Fed policy, rate decisions, or FOMC meetings...", scale=10),
examples=[
"What was the rate decision in the last FOMC meeting?",
"Compare June 2024 vs July 2024 FOMC meetings",
"Tell me about inflation expectations",
"Has the Fed's employment stance changed?",
"What factors influenced the latest rate decision?",
],
submit_btn="Send",
)
# Search functionality for FOMC meetings
def search_meetings(search_term):
"""Filter FOMC meetings based on search term"""
if not search_term.strip():
# Return all meetings if no search term
return generate_meetings_html(FOMC_MEETINGS)
else:
# Filter meetings based on search term
filtered_meetings = []
search_lower = search_term.lower()
for meeting in FOMC_MEETINGS:
# Search in date, title, summary, economic factors, etc.
search_fields = [
meeting.get('date', ''),
meeting.get('title', ''),
meeting.get('summary', ''),
meeting.get('rate_decision', ''),
meeting.get('action', ''),
meeting.get('economic_outlook', ''),
meeting.get('market_impact', ''),
' '.join(meeting.get('key_economic_factors', []))
]
if any(search_lower in field.lower() for field in search_fields):
filtered_meetings.append(meeting)
if filtered_meetings:
return generate_meetings_html(filtered_meetings)
else:
return f'<p style="color: #6b7280; text-align: center; padding: 20px;">No meetings found matching "{search_term}"</p>'
# Wire up search functionality
date_search.change(
search_meetings,
inputs=date_search,
outputs=meetings_accordion
)
# Example buttons are now handled by ChatInterface examples parameter
if __name__ == "__main__":
demo.launch()