RobertoBarrosoLuque
Refactor data pipeline
8dda917
import asyncio
import json
import os
import re
import ssl
from datetime import datetime
from pathlib import Path
from typing import Dict, List, Optional, Tuple
from urllib.parse import urljoin
import aiohttp
import certifi
import requests
from bs4 import BeautifulSoup
from dotenv import load_dotenv
from pydantic import BaseModel
import pdfplumber
import tempfile
import argparse
from src.modules.llm_completions import get_llm, run_multi_llm_completions
from src.modules.constants import PROMPT_LIBRARY
DATA_DIR = Path(__file__).parents[2] / "data"
PROCESSED_MEETINGS = "fed_processed_meetings.json"
class RateDecision(BaseModel):
"""Enhanced Pydantic model for comprehensive Fed decision analysis"""
action: str
rate: str
magnitude: str
forward_guidance: str
key_economic_factors: List[str]
economic_outlook: str
market_impact: str
class Meeting:
"""Data model for a Fed meeting"""
def __init__(self, date: str, title: str, full_text: str, url: str = ""):
self.date = date
self.title = title
self.full_text = full_text
self.url = url
self.action = None
self.summary = None
self.rate = None
self.magnitude = None
self.forward_guidance = None
self.key_economic_factors = None
self.economic_outlook = None
self.market_impact = None
def to_dict(self) -> Dict:
return {
"date": self.date,
"title": self.title,
"full_text": self.full_text,
"url": self.url,
"action": self.action,
"rate": self.rate,
"magnitude": self.magnitude,
"forward_guidance": self.forward_guidance,
"key_economic_factors": self.key_economic_factors,
"economic_outlook": self.economic_outlook,
"market_impact": self.market_impact
}
@classmethod
def from_dict(cls, data: Dict) -> 'Meeting':
meeting = cls(data["date"], data["title"], data["full_text"], data.get("url", ""))
meeting.rate_decision = data.get("rate_decision")
meeting.summary = data.get("summary")
meeting.action = data.get("action")
meeting.rate = data.get("rate")
meeting.magnitude = data.get("magnitude")
meeting.forward_guidance = data.get("forward_guidance")
meeting.key_economic_factors = data.get("key_economic_factors")
meeting.economic_outlook = data.get("economic_outlook")
meeting.market_impact = data.get("market_impact")
return meeting
class FedScraper:
"""Scrapes FOMC meeting minutes from federalreserve.gov"""
BASE_URL = "https://www.federalreserve.gov"
CALENDAR_URL = "https://www.federalreserve.gov/monetarypolicy/fomccalendars.htm"
def __init__(self, session: Optional[aiohttp.ClientSession] = None):
self.session = session
self._own_session = session is None
async def __aenter__(self):
if self._own_session:
# Create SSL context with proper certificate verification
ssl_context = ssl.create_default_context(cafile=certifi.where())
connector = aiohttp.TCPConnector(ssl=ssl_context)
# Add headers to mimic a real browser
headers = {
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
self.session = aiohttp.ClientSession(
connector=connector,
headers=headers,
timeout=aiohttp.ClientTimeout(total=30)
)
return self
async def __aexit__(self, exc_type, exc_val, exc_tb):
if self._own_session and self.session:
await self.session.close()
def get_calendar_page(self) -> BeautifulSoup:
"""Get the FOMC calendar page"""
headers = {
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
# Use requests with SSL verification and retry logic
session = requests.Session()
session.headers.update(headers)
try:
response = session.get(self.CALENDAR_URL, timeout=30, verify=True)
response.raise_for_status()
return BeautifulSoup(response.content, 'html.parser')
except requests.exceptions.SSLError:
print("SSL verification failed, trying without verification...")
response = session.get(self.CALENDAR_URL, timeout=30, verify=False)
response.raise_for_status()
return BeautifulSoup(response.content, 'html.parser')
async def scrape_meetings(
self, max_meetings: int = 20, year_range: Tuple[int, int] = (2022, 2024)
) -> List[Meeting]:
"""Scrape multiple meetings"""
print("Fetching FOMC calendar page...")
soup = self.get_calendar_page()
print(f"Extracting meeting links for years {year_range[0]}-{year_range[1]}...")
meeting_links = self.extract_meeting_links(soup, year_range)
meeting_links = [
(date, f"FOMC Meeting {date}", link)
for date, _, link in meeting_links if link.lower().endswith('.pdf')
]
if not meeting_links:
print("No meeting links found")
return []
print(f"Found {len(meeting_links)} meetings")
# Limit number of meetings
meeting_links = meeting_links[:max_meetings]
if len(meeting_links) < len(meeting_links):
print(f"Processing first {max_meetings} meetings")
meetings = []
async with self:
for i, (date, title, url) in enumerate(meeting_links, 1):
try:
print(f"\n[{i}/{len(meeting_links)}] Scraping: {date}")
print(f" URL: {url}")
content = await self.scrape_meeting_content(url)
if content:
meeting = Meeting(date, title, content, url)
meetings.append(meeting)
print(f" Successfully extracted {len(content)} characters")
else:
print(f" No content extracted from {url}")
# Rate limiting - be respectful to Fed servers
if i < len(meeting_links):
print(" Waiting 1 seconds before next request...")
await asyncio.sleep(1)
except Exception as e:
print(f" Error scraping meeting {date}: {e}")
continue
print(f"\nSuccessfully scraped {len(meetings)} out of {len(meeting_links)} meetings")
return meetings
async def scrape_meeting_content(self, url: str) -> str:
"""Scrape content from HTML pages or extract text from PDF files"""
if not self.session:
raise RuntimeError("Session not initialized. Use async context manager.")
try:
async with self.session.get(url) as response:
response.raise_for_status()
# Check content type
content_type = response.headers.get('content-type', '').lower()
if 'application/pdf' in content_type or url.lower().endswith('.pdf'):
print(f" Processing PDF: {url}")
return await self._extract_pdf_text(response)
else:
print(f" Processing HTML: {url}")
return await self._extract_html_text(response)
except Exception as e:
print(f" Error processing {url}: {e}")
return ""
async def _extract_pdf_text(self, response) -> str:
"""Extract text from PDF using pdfplumber"""
try:
pdf_content = await response.read()
# Create temporary file for pdfplumber processing
with tempfile.NamedTemporaryFile(suffix='.pdf', delete=False) as tmp_file:
tmp_file.write(pdf_content)
tmp_file.flush()
text_content = []
try:
with pdfplumber.open(tmp_file.name) as pdf:
print(f" Extracting text from {len(pdf.pages)} pages")
for page_num, page in enumerate(pdf.pages):
try:
page_text = page.extract_text()
if page_text and page_text.strip():
# Clean up common PDF artifacts
page_text = self._clean_pdf_text(page_text)
text_content.append(page_text)
except Exception as e:
print(f" Could not extract text from page {page_num + 1}: {e}")
continue
finally:
# Always cleanup temp file
try:
os.unlink(tmp_file.name)
except OSError:
pass
# Join all page text
return '\n\n'.join(text_content)
except Exception as e:
print(f" Error extracting PDF text: {e}")
return ""
@staticmethod
def _clean_pdf_text(text: str) -> str:
"""Clean common PDF text extraction artifacts"""
# Remove excessive whitespace while preserving paragraph breaks
text = re.sub(r'[ \t]+', ' ', text)
# Fix common PDF line break issues
text = re.sub(r'(\w)-\s*\n\s*(\w)', r'\1\2', text) # Rejoin hyphenated words
text = re.sub(r'(?<=[.!?])\s*\n\s*(?=[A-Z])', ' ', text) # Join sentences split across lines
# Remove page numbers and headers/footers (common patterns)
text = re.sub(r'\n\s*\d+\s*\n', '\n', text) # Standalone page numbers
text = re.sub(r'\n\s*Page \d+ of \d+\s*\n', '\n', text) # "Page X of Y"
return text.strip()
@staticmethod
async def _extract_html_text(response) -> str:
"""Extract text from HTML response"""
try:
try:
content = await response.text()
except UnicodeDecodeError:
# Fallback for encoding issues
content_bytes = await response.read()
content = content_bytes.decode('utf-8', errors='ignore')
soup = BeautifulSoup(content, 'html.parser')
# Remove script and style elements
for script in soup(["script", "style"]):
script.decompose()
# Find the main content area
content_div = (
soup.find('div', {'class': 'col-xs-12 col-sm-8 col-md-8'}) or
soup.find('div', {'id': 'article'}) or
soup.find('div', {'class': 'content'}) or
soup.find('main') or
soup.body
)
if content_div:
text = content_div.get_text(separator=' ', strip=True)
text = re.sub(r'\s+', ' ', text)
print(f" Extracted {len(text)} characters from HTML")
return text.strip()
print(" No content found in HTML")
return ""
except Exception as e:
print(f" Error extracting HTML text: {e}")
return ""
def extract_meeting_links(self, soup: BeautifulSoup, year_range: Tuple[int, int] = (2022, 2024)) -> List[
Tuple[str, str, str]]:
"""Extract meeting links from the calendar page - handles both HTML and PDF"""
meetings = []
for link in soup.find_all('a', href=True):
href = link.get('href', '')
text = link.get_text().strip()
# Find links to meeting minutes (HTML or PDF)
if ('minutes' in href.lower() and
('fomcminutes' in href or 'fomc/minutes' in href)):
date_match = re.search(r'(\d{4})(\d{2})(\d{2})', href)
if date_match:
year, month, day = date_match.groups()
year_int = int(year)
if year_range[0] <= year_int <= year_range[1]:
date_str = f"{year}-{month}-{day}"
full_url = urljoin(self.BASE_URL, href)
# Identify content type in title
content_type = "PDF" if href.lower().endswith('.pdf') else "HTML"
title_with_type = f"{text or 'FOMC Meeting ' + date_str} ({content_type})"
meetings.append((date_str, title_with_type, full_url))
meetings.sort(key=lambda x: x[0], reverse=True)
return meetings
class DataProcessor:
"""Processes scraped meeting data using LLM analysis"""
def __init__(self, api_key: str, model: str = "small"):
self.api_key = api_key
self.model = model
self.llm = get_llm(model, api_key)
async def process_meetings(self, meetings: List[Meeting]) -> List[Meeting]:
"""Process all meetings with LLM analysis and update meeting objects"""
print(f"Processing {len(meetings)} meetings with LLM analysis...")
prompts = [
PROMPT_LIBRARY['extract_rate_decision'].format(
meeting_date=meeting.date,
meeting_title=meeting.title,
text=meeting.full_text if len(meeting.full_text) < 100000 else meeting.full_text[:100000]
)
for meeting in meetings
]
meetings_extracted = await run_multi_llm_completions(
llm=self.llm,
prompts=prompts,
output_class=RateDecision
)
final_results = [
RateDecision.model_validate_json(
response.choices[0].message.content
)
for response in meetings_extracted
]
# Update meetings with processed results
if len(final_results) == len(meetings):
for i, result in enumerate(final_results):
meetings[i].action = result.action
meetings[i].rate = result.rate
meetings[i].magnitude = result.magnitude
meetings[i].forward_guidance = result.forward_guidance
meetings[i].key_economic_factors = result.key_economic_factors
meetings[i].economic_outlook = result.economic_outlook
meetings[i].market_impact = result.market_impact
return meetings
class FedDataPipeline:
"""Main pipeline for scraping and processing Fed meeting data"""
def __init__(self, api_key: str, model: str = "small"):
self.api_key = api_key
self.model = model
self.data_dir = DATA_DIR
self.data_dir.mkdir(exist_ok=True)
self.scraper = FedScraper()
self.processor = DataProcessor(api_key, model)
def save_meetings(self, meetings: List[Meeting], filename: str = None) -> str:
"""Save meetings to JSON file"""
if filename is None:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"fed_meetings_{timestamp}.json"
filepath = self.data_dir / filename
meetings_data = [meeting.to_dict() for meeting in meetings]
with open(filepath, 'w', encoding='utf-8') as f:
json.dump(meetings_data, f, indent=2, ensure_ascii=False)
print(f"Saved {len(meetings)} meetings to {filepath}")
return str(filepath)
def load_meetings(self, filename: str) -> List[Meeting]:
"""Load meetings from JSON file"""
filepath = self.data_dir / filename if not os.path.isabs(filename) else Path(filename)
with open(filepath, 'r', encoding='utf-8') as f:
data = json.load(f)
meetings = [Meeting.from_dict(item) for item in data]
print(f"Loaded {len(meetings)} meetings from {filepath}")
return meetings
async def process_from_scraped_data(self, scraped_filename: str) -> str:
"""Process already scraped data with LLM analysis"""
print(f"Loading scraped data from: {scraped_filename}")
meetings = self.load_meetings(scraped_filename)
if not meetings:
print("No meetings found in scraped data")
return ""
print(f"\nProcessing {len(meetings)} meetings with LLM analysis...")
processed_results = await self.processor.process_meetings(meetings)
output_file = self.save_meetings(processed_results, PROCESSED_MEETINGS)
print("\nProcessing completed successfully!")
print(f"Processed data: {output_file}")
return output_file
async def run_pipeline(self, max_meetings: int = 20, year_range: Tuple[int, int] = (2022, 2024)) -> str:
"""Run the complete data pipeline"""
print("Starting Fed AI Savant Data Pipeline...")
# Step 1: Scrape meeting data
print("\n1. Scraping FOMC meeting minutes...")
meetings = await self.scraper.scrape_meetings(max_meetings, year_range)
print(f"Scraped {len(meetings)} meetings")
if not meetings:
print("No meetings found to process")
return ""
# Save intermediate scraped data (before LLM processing)
print("\n1.5. Saving intermediate scraped data...")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
scraped_filename = f"fed_meetings_scraped_{timestamp}.json"
scraped_filepath = self.save_meetings(meetings, scraped_filename)
print(f"Intermediate scraped data saved to: {scraped_filepath}")
# Step 2: Process with LLM analysis
print("\n2. Processing meetings with LLM analysis...")
processed_results = await self.processor.process_meetings(meetings)
# Step 3: Save final processed data
print("\n3. Saving final processed data...")
output_file = self.save_meetings(processed_results, PROCESSED_MEETINGS)
print("\nPipeline completed successfully!")
print(f"Scraped data: {scraped_filepath}")
print(f"Processed data: {output_file}")
return output_file
async def main():
"""Main function for running the pipeline as a script"""
load_dotenv()
parser = argparse.ArgumentParser(description="Fed AI Savant Data Pipeline")
parser.add_argument("--max-meetings", type=int, default=25, help="Maximum number of meetings to scrape")
parser.add_argument("--start-year", type=int, default=2022, help="Start year for meeting range")
parser.add_argument("--end-year", type=int, default=2025, help="End year for meeting range")
parser.add_argument("--from-scraped", type=str, help="Process from already scraped data file (skips scraping)")
args = parser.parse_args()
# Get API key from environment
api_key = os.getenv("FIREWORKS_API_KEY")
if not api_key:
print("Error: FIREWORKS_API_KEY not found in environment variables")
print("Please create a .env file with: FIREWORKS_API_KEY=your_api_key_here")
return
# Create and run pipeline (using default "small" model)
pipeline = FedDataPipeline(
api_key=api_key,
model="small",
)
# Check if processing from already scraped data
if args.from_scraped:
print(f"Processing from scraped data: {args.from_scraped}")
output_file = await pipeline.process_from_scraped_data(args.from_scraped)
else:
year_range = (args.start_year, args.end_year)
output_file = await pipeline.run_pipeline(args.max_meetings, year_range)
if output_file:
print(f"\nSuccessfully completed! Data saved to: {output_file}")
else:
print("\nPipeline failed or no data processed")
if __name__ == "__main__":
asyncio.run(main())