Spaces:
Running
on
L4
Running
on
L4
File size: 11,353 Bytes
82d5f8b 75e9ff1 89518a7 81e0a1c 315fa0c a26769d 82d5f8b a26769d 82d5f8b 0a3525d 12b4214 0a3525d abfe079 dea01c6 abfe079 0a3525d b2eb230 a26769d 0a3525d a26769d 0a3525d a26769d 469209d 2616e46 0a3525d a26769d 0a3525d 69e8a46 0a3525d 9bfe4ad a26769d 0a3525d 12b4214 0a3525d 12b4214 a53df75 0a3525d 69e8a46 a26769d 0a3525d 69e8a46 a26769d 0a3525d b2eb230 69e8a46 b2eb230 492fb71 b2eb230 a26769d b2eb230 a26769d b2eb230 a26769d b2eb230 a26769d 19961a3 b2eb230 a26769d b2eb230 a26769d 19961a3 b2eb230 a26769d b2eb230 9bd8a0b a26769d 9bd8a0b b2eb230 a26769d b2eb230 0a3525d 69e8a46 b2eb230 69e8a46 b2eb230 69e8a46 b2eb230 0a3525d a26769d 0a3525d b2eb230 0a3525d a26769d 0a3525d a26769d 0a3525d b2eb230 0a3525d b2eb230 662d788 0a3525d b2eb230 0a3525d a26769d 0a3525d 69e8a46 0a3525d a26769d 0a3525d a26769d 0a3525d 574a682 12b4214 a26769d 0a3525d 12b4214 0a3525d 69e8a46 0a3525d 69e8a46 0a3525d a26769d 0a3525d 69e8a46 a26769d b2eb230 a26769d 0a3525d a26769d 1b49782 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import os
import queue
from huggingface_hub import snapshot_download
import numpy as np
import wave
import io
import gc
from typing import Callable
# Download if not exists
os.makedirs("checkpoints", exist_ok=True)
snapshot_download(repo_id="fishaudio/openaudio-s1-mini", local_dir="./checkpoints/openaudio-s1-mini")
print("All checkpoints downloaded")
import html
import os
from argparse import ArgumentParser
from pathlib import Path
import gradio as gr
import torch
import torchaudio
torchaudio.set_audio_backend("soundfile")
from loguru import logger
from fish_speech.i18n import i18n
from fish_speech.inference_engine import TTSInferenceEngine
from fish_speech.models.dac.inference import load_model as load_decoder_model
from fish_speech.models.text2semantic.inference import launch_thread_safe_queue
from tools.webui.inference import get_inference_wrapper
from fish_speech.utils.schema import ServeTTSRequest
# Make einx happy
os.environ["EINX_FILTER_TRACEBACK"] = "false"
HEADER_MD = """# OpenAudio S1
## The demo in this space is OpenAudio S1, Please check [Fish Audio](https://fish.audio) for the best model.
## 该 Demo 为 OpenAudio S1 版本, 请在 [Fish Audio](https://fish.audio) 体验最新 DEMO.
A text-to-speech model based on DAC & Qwen3 developed by [Fish Audio](https://fish.audio).
由 [Fish Audio](https://fish.audio) 研发的 DAC & Qwen3 多语种语音合成.
You can find the source code [here](https://github.com/fishaudio/fish-speech) and models [here](https://huggingface.co/fishaudio/openaudio-s1-mini).
你可以在 [这里](https://github.com/fishaudio/fish-speech) 找到源代码和 [这里](https://huggingface.co/fishaudio/openaudio-s1-mini) 找到模型.
Related code and weights are released under CC BY-NC-SA 4.0 License.
相关代码,权重使用 CC BY-NC-SA 4.0 许可证发布.
We are not responsible for any misuse of the model, please consider your local laws and regulations before using it.
我们不对模型的任何滥用负责,请在使用之前考虑您当地的法律法规.
The model running in this WebUI is OpenAudio S1 Mini.
在此 WebUI 中运行的模型是 OpenAudio S1 Mini.
"""
TEXTBOX_PLACEHOLDER = """Put your text here. 在此处输入文本."""
try:
import spaces
GPU_DECORATOR = spaces.GPU
except ImportError:
def GPU_DECORATOR(func):
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
return wrapper
def build_html_error_message(error):
return f"""
<div style="color: red;
font-weight: bold;">
{html.escape(str(error))}
</div>
"""
def wav_chunk_header(sample_rate=44100, bit_depth=16, channels=1):
buffer = io.BytesIO()
with wave.open(buffer, "wb") as wav_file:
wav_file.setnchannels(channels)
wav_file.setsampwidth(bit_depth // 8)
wav_file.setframerate(sample_rate)
wav_header_bytes = buffer.getvalue()
buffer.close()
return wav_header_bytes
def build_app(inference_fct: Callable, theme: str = "light") -> gr.Blocks:
with gr.Blocks(theme=gr.themes.Base()) as app:
gr.Markdown(HEADER_MD)
# Use light theme by default
app.load(
None,
None,
js="() => {const params = new URLSearchParams(window.location.search);if (!params.has('__theme')) {params.set('__theme', '%s');window.location.search = params.toString();}}"
% theme,
)
# Inference
with gr.Row():
with gr.Column(scale=3):
text = gr.Textbox(
label=i18n("Input Text"), placeholder=TEXTBOX_PLACEHOLDER, lines=10
)
with gr.Row():
with gr.Column():
with gr.Tab(label=i18n("Advanced Config")):
with gr.Row():
chunk_length = gr.Slider(
label=i18n("Iterative Prompt Length, 0 means off"),
minimum=0,
maximum=500,
value=0,
step=8,
)
max_new_tokens = gr.Slider(
label=i18n(
"Maximum tokens per batch, 0 means no limit"
),
minimum=0,
maximum=2048,
value=0,
step=8,
)
with gr.Row():
top_p = gr.Slider(
label="Top-P",
minimum=0.7,
maximum=0.95,
value=0.9,
step=0.01,
)
repetition_penalty = gr.Slider(
label=i18n("Repetition Penalty"),
minimum=1,
maximum=1.2,
value=1.1,
step=0.01,
)
with gr.Row():
temperature = gr.Slider(
label="Temperature",
minimum=0.7,
maximum=1.0,
value=0.9,
step=0.01,
)
seed = gr.Number(
label="Seed",
info="0 means randomized inference, otherwise deterministic",
value=0,
)
with gr.Tab(label=i18n("Reference Audio")):
with gr.Row():
gr.Markdown(
i18n(
"5 to 10 seconds of reference audio, useful for specifying speaker."
)
)
with gr.Row():
reference_id = gr.Textbox(
label=i18n("Reference ID"),
placeholder="Leave empty to use uploaded references",
)
with gr.Row():
use_memory_cache = gr.Radio(
label=i18n("Use Memory Cache"),
choices=["on", "off"],
value="on",
)
with gr.Row():
reference_audio = gr.Audio(
label=i18n("Reference Audio"),
type="filepath",
)
with gr.Row():
reference_text = gr.Textbox(
label=i18n("Reference Text"),
lines=1,
placeholder="在一无所知中,梦里的一天结束了,一个新的「轮回」便会开始。",
value="",
)
with gr.Column(scale=3):
with gr.Row():
error = gr.HTML(
label=i18n("Error Message"),
visible=True,
)
with gr.Row():
audio = gr.Audio(
label=i18n("Generated Audio"),
type="numpy",
interactive=False,
visible=True,
)
with gr.Row():
with gr.Column(scale=3):
generate = gr.Button(
value="\U0001f3a7 " + i18n("Generate"),
variant="primary",
)
# Submit
generate.click(
inference_fct,
[
text,
reference_id,
reference_audio,
reference_text,
max_new_tokens,
chunk_length,
top_p,
repetition_penalty,
temperature,
seed,
use_memory_cache,
],
[audio, error],
concurrency_limit=1,
)
return app
def parse_args():
parser = ArgumentParser()
parser.add_argument(
"--llama-checkpoint-path",
type=Path,
default="checkpoints/openaudio-s1-mini",
)
parser.add_argument(
"--decoder-checkpoint-path",
type=Path,
default="checkpoints/openaudio-s1-mini/codec.pth",
)
parser.add_argument("--decoder-config-name", type=str, default="modded_dac_vq")
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--half", action="store_true")
parser.add_argument("--compile", action="store_true",default=True)
parser.add_argument("--max-gradio-length", type=int, default=0)
parser.add_argument("--theme", type=str, default="dark")
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
args.precision = torch.half if args.half else torch.bfloat16
logger.info("Loading Llama model...")
llama_queue = launch_thread_safe_queue(
checkpoint_path=args.llama_checkpoint_path,
device=args.device,
precision=args.precision,
compile=args.compile,
)
logger.info("Llama model loaded, loading VQ-GAN model...")
decoder_model = load_decoder_model(
config_name=args.decoder_config_name,
checkpoint_path=args.decoder_checkpoint_path,
device=args.device,
)
logger.info("Decoder model loaded, warming up...")
# Create the inference engine
inference_engine = TTSInferenceEngine(
llama_queue=llama_queue,
decoder_model=decoder_model,
compile=args.compile,
precision=args.precision,
)
# Dry run to check if the model is loaded correctly and avoid the first-time latency
list(
inference_engine.inference(
ServeTTSRequest(
text="Hello world.",
references=[],
reference_id=None,
max_new_tokens=1024,
chunk_length=200,
top_p=0.7,
repetition_penalty=1.5,
temperature=0.7,
format="wav",
)
)
)
logger.info("Warming up done, launching the web UI...")
inference_fct = get_inference_wrapper(inference_engine)
app = build_app(inference_fct, args.theme)
app.queue(api_open=True).launch(show_error=True, show_api=True)
|