File size: 11,353 Bytes
82d5f8b
75e9ff1
89518a7
81e0a1c
315fa0c
 
 
a26769d
82d5f8b
 
 
a26769d
82d5f8b
 
0a3525d
 
12b4214
0a3525d
 
 
 
 
abfe079
 
dea01c6
abfe079
0a3525d
b2eb230
a26769d
 
 
 
 
 
0a3525d
 
 
 
a26769d
0a3525d
a26769d
 
469209d
2616e46
 
0a3525d
a26769d
 
0a3525d
69e8a46
 
0a3525d
 
 
9bfe4ad
a26769d
 
0a3525d
 
 
 
12b4214
 
 
 
 
 
 
 
 
 
 
 
0a3525d
 
12b4214
 
a53df75
0a3525d
 
 
69e8a46
 
 
 
 
 
 
 
 
 
 
 
 
a26769d
0a3525d
 
 
 
 
 
 
69e8a46
a26769d
0a3525d
 
 
 
 
 
b2eb230
69e8a46
 
 
b2eb230
 
 
 
 
492fb71
 
 
b2eb230
 
 
 
 
a26769d
b2eb230
a26769d
b2eb230
a26769d
 
b2eb230
 
 
 
 
a26769d
 
19961a3
b2eb230
 
 
 
 
 
a26769d
 
b2eb230
 
 
 
 
 
a26769d
 
19961a3
b2eb230
 
 
 
 
 
 
 
 
 
 
 
a26769d
b2eb230
 
9bd8a0b
a26769d
 
 
9bd8a0b
b2eb230
 
 
 
a26769d
 
b2eb230
 
 
 
 
 
 
 
 
 
 
 
 
 
0a3525d
 
69e8a46
b2eb230
 
 
 
 
 
 
 
69e8a46
b2eb230
69e8a46
b2eb230
0a3525d
 
 
a26769d
 
0a3525d
 
b2eb230
0a3525d
a26769d
0a3525d
a26769d
 
0a3525d
 
 
 
 
 
 
b2eb230
 
0a3525d
b2eb230
662d788
0a3525d
b2eb230
0a3525d
 
 
 
 
 
 
a26769d
0a3525d
 
69e8a46
0a3525d
a26769d
0a3525d
a26769d
0a3525d
 
574a682
12b4214
a26769d
0a3525d
 
 
 
 
 
 
 
 
12b4214
0a3525d
 
 
 
 
 
 
69e8a46
 
 
0a3525d
 
 
69e8a46
0a3525d
a26769d
 
 
 
 
 
 
 
0a3525d
69e8a46
a26769d
 
 
 
 
 
 
 
 
 
 
b2eb230
a26769d
0a3525d
 
 
 
a26769d
 
 
1b49782
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import os
import queue
from huggingface_hub import snapshot_download
import numpy as np
import wave
import io
import gc
from typing import Callable

# Download if not exists
os.makedirs("checkpoints", exist_ok=True)
snapshot_download(repo_id="fishaudio/openaudio-s1-mini", local_dir="./checkpoints/openaudio-s1-mini")

print("All checkpoints downloaded")

import html
import os
from argparse import ArgumentParser
from pathlib import Path

import gradio as gr
import torch
import torchaudio

torchaudio.set_audio_backend("soundfile")

from loguru import logger
from fish_speech.i18n import i18n
from fish_speech.inference_engine import TTSInferenceEngine
from fish_speech.models.dac.inference import load_model as load_decoder_model
from fish_speech.models.text2semantic.inference import launch_thread_safe_queue
from tools.webui.inference import get_inference_wrapper
from fish_speech.utils.schema import ServeTTSRequest

# Make einx happy
os.environ["EINX_FILTER_TRACEBACK"] = "false"


HEADER_MD = """# OpenAudio S1

## The demo in this space is OpenAudio S1, Please check [Fish Audio](https://fish.audio) for the best model.
## 该 Demo 为 OpenAudio S1 版本, 请在 [Fish Audio](https://fish.audio) 体验最新 DEMO.

A text-to-speech model based on DAC & Qwen3 developed by [Fish Audio](https://fish.audio).  
由 [Fish Audio](https://fish.audio) 研发的 DAC & Qwen3 多语种语音合成. 

You can find the source code [here](https://github.com/fishaudio/fish-speech) and models [here](https://huggingface.co/fishaudio/openaudio-s1-mini).  
你可以在 [这里](https://github.com/fishaudio/fish-speech) 找到源代码和 [这里](https://huggingface.co/fishaudio/openaudio-s1-mini) 找到模型.  

Related code and weights are released under CC BY-NC-SA 4.0 License.  
相关代码,权重使用 CC BY-NC-SA 4.0 许可证发布.

We are not responsible for any misuse of the model, please consider your local laws and regulations before using it.  
我们不对模型的任何滥用负责,请在使用之前考虑您当地的法律法规.

The model running in this WebUI is OpenAudio S1 Mini.
在此 WebUI 中运行的模型是 OpenAudio S1 Mini.
"""

TEXTBOX_PLACEHOLDER = """Put your text here. 在此处输入文本."""

try:
    import spaces

    GPU_DECORATOR = spaces.GPU
except ImportError:

    def GPU_DECORATOR(func):
        def wrapper(*args, **kwargs):
            return func(*args, **kwargs)

        return wrapper

def build_html_error_message(error):
    return f"""
    <div style="color: red; 
    font-weight: bold;">
        {html.escape(str(error))}
    </div>
    """

def wav_chunk_header(sample_rate=44100, bit_depth=16, channels=1):
    buffer = io.BytesIO()

    with wave.open(buffer, "wb") as wav_file:
        wav_file.setnchannels(channels)
        wav_file.setsampwidth(bit_depth // 8)
        wav_file.setframerate(sample_rate)

    wav_header_bytes = buffer.getvalue()
    buffer.close()
    return wav_header_bytes


def build_app(inference_fct: Callable, theme: str = "light") -> gr.Blocks:
    with gr.Blocks(theme=gr.themes.Base()) as app:
        gr.Markdown(HEADER_MD)

        # Use light theme by default
        app.load(
            None,
            None,
            js="() => {const params = new URLSearchParams(window.location.search);if (!params.has('__theme')) {params.set('__theme', '%s');window.location.search = params.toString();}}"
            % theme,
        )

        # Inference
        with gr.Row():
            with gr.Column(scale=3):
                text = gr.Textbox(
                    label=i18n("Input Text"), placeholder=TEXTBOX_PLACEHOLDER, lines=10
                )

                with gr.Row():
                    with gr.Column():
                        with gr.Tab(label=i18n("Advanced Config")):
                            with gr.Row():
                                chunk_length = gr.Slider(
                                    label=i18n("Iterative Prompt Length, 0 means off"),
                                    minimum=0,
                                    maximum=500,
                                    value=0,
                                    step=8,
                                )

                                max_new_tokens = gr.Slider(
                                    label=i18n(
                                        "Maximum tokens per batch, 0 means no limit"
                                    ),
                                    minimum=0,
                                    maximum=2048,
                                    value=0,
                                    step=8,
                                )

                            with gr.Row():
                                top_p = gr.Slider(
                                    label="Top-P",
                                    minimum=0.7,
                                    maximum=0.95,
                                    value=0.9,
                                    step=0.01,
                                )

                                repetition_penalty = gr.Slider(
                                    label=i18n("Repetition Penalty"),
                                    minimum=1,
                                    maximum=1.2,
                                    value=1.1,
                                    step=0.01,
                                )

                            with gr.Row():
                                temperature = gr.Slider(
                                    label="Temperature",
                                    minimum=0.7,
                                    maximum=1.0,
                                    value=0.9,
                                    step=0.01,
                                )
                                seed = gr.Number(
                                    label="Seed",
                                    info="0 means randomized inference, otherwise deterministic",
                                    value=0,
                                )

                        with gr.Tab(label=i18n("Reference Audio")):
                            with gr.Row():
                                gr.Markdown(
                                    i18n(
                                        "5 to 10 seconds of reference audio, useful for specifying speaker."
                                    )
                                )
                            with gr.Row():
                                reference_id = gr.Textbox(
                                    label=i18n("Reference ID"),
                                    placeholder="Leave empty to use uploaded references",
                                )

                            with gr.Row():
                                use_memory_cache = gr.Radio(
                                    label=i18n("Use Memory Cache"),
                                    choices=["on", "off"],
                                    value="on",
                                )

                            with gr.Row():
                                reference_audio = gr.Audio(
                                    label=i18n("Reference Audio"),
                                    type="filepath",
                                )
                            with gr.Row():
                                reference_text = gr.Textbox(
                                    label=i18n("Reference Text"),
                                    lines=1,
                                    placeholder="在一无所知中,梦里的一天结束了,一个新的「轮回」便会开始。",
                                    value="",
                                )

            with gr.Column(scale=3):
                with gr.Row():
                    error = gr.HTML(
                        label=i18n("Error Message"),
                        visible=True,
                    )
                with gr.Row():
                    audio = gr.Audio(
                        label=i18n("Generated Audio"),
                        type="numpy",
                        interactive=False,
                        visible=True,
                    )

                with gr.Row():
                    with gr.Column(scale=3):
                        generate = gr.Button(
                            value="\U0001f3a7 " + i18n("Generate"),
                            variant="primary",
                        )

        # Submit
        generate.click(
            inference_fct,
            [
                text,
                reference_id,
                reference_audio,
                reference_text,
                max_new_tokens,
                chunk_length,
                top_p,
                repetition_penalty,
                temperature,
                seed,
                use_memory_cache,
            ],
            [audio, error],
            concurrency_limit=1,
        )

    return app

def parse_args():
    parser = ArgumentParser()
    parser.add_argument(
        "--llama-checkpoint-path",
        type=Path,
        default="checkpoints/openaudio-s1-mini",
    )
    parser.add_argument(
        "--decoder-checkpoint-path",
        type=Path,
        default="checkpoints/openaudio-s1-mini/codec.pth",
    )
    parser.add_argument("--decoder-config-name", type=str, default="modded_dac_vq")
    parser.add_argument("--device", type=str, default="cuda")
    parser.add_argument("--half", action="store_true")
    parser.add_argument("--compile", action="store_true",default=True)
    parser.add_argument("--max-gradio-length", type=int, default=0)
    parser.add_argument("--theme", type=str, default="dark")

    return parser.parse_args()


if __name__ == "__main__":
    args = parse_args()
    args.precision = torch.half if args.half else torch.bfloat16

    logger.info("Loading Llama model...")
    llama_queue = launch_thread_safe_queue(
        checkpoint_path=args.llama_checkpoint_path,
        device=args.device,
        precision=args.precision,
        compile=args.compile,
    )
    logger.info("Llama model loaded, loading VQ-GAN model...")

    decoder_model = load_decoder_model(
        config_name=args.decoder_config_name,
        checkpoint_path=args.decoder_checkpoint_path,
        device=args.device,
    )

    logger.info("Decoder model loaded, warming up...")

    # Create the inference engine
    inference_engine = TTSInferenceEngine(
        llama_queue=llama_queue,
        decoder_model=decoder_model,
        compile=args.compile,
        precision=args.precision,
    )

    # Dry run to check if the model is loaded correctly and avoid the first-time latency
    list(
        inference_engine.inference(
            ServeTTSRequest(
                text="Hello world.",
                references=[],
                reference_id=None,
                max_new_tokens=1024,
                chunk_length=200,
                top_p=0.7,
                repetition_penalty=1.5,
                temperature=0.7,
                format="wav",
            )
        )
    )

    logger.info("Warming up done, launching the web UI...")

    inference_fct = get_inference_wrapper(inference_engine)

    app = build_app(inference_fct, args.theme)
    app.queue(api_open=True).launch(show_error=True, show_api=True)