Spaces:
Running
on
L4
Running
on
L4
File size: 5,479 Bytes
a26769d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import base64
import json
import logging
import re
from pathlib import Path
import tiktoken
logger = logging.getLogger(__name__)
# This is a modified version of the default pattern from GPT-4o, that better handles punctuations.
FISH_TIKTOKEN_PATTERN = "|".join(
[
r"(?i:'s|'t|'re|'ve|'m|'ll|'d)",
r"\p{P}",
r"[^\r\n\p{L}\p{N}]?\p{L}+",
r"\p{N}",
r" ?[^\s\p{L}\p{N}]+[\r\n]*",
r"\s*[\r\n]+",
r"\s+(\?!\S)",
r"\s+",
]
)
TIKTOKEN_MAX_ENCODE_CHARS = 400_000
BOS_TOKEN = "<|begin_of_text|>"
EOS_TOKEN = "<|end_of_text|>"
PAD_TOKEN = "<|pad|>"
IM_START_TOKEN = "<|im_start|>"
IM_END_TOKEN = "<|im_end|>"
PHONEME_START_TOKEN = "<|phoneme_start|>"
PHONEME_END_TOKEN = "<|phoneme_end|>"
TOOL_CALL_START_TOKEN = "<|tool_call_start|>"
TOOL_CALL_END_TOKEN = "<|tool_call_end|>"
MODALITY_TEXT_TOKEN = "<|text|>"
MODALITY_VOICE_TOKEN = "<|voice|>"
MODALITY_INTERLEAVE_TOKEN = "<|interleave|>"
AUDIO_START_TOKEN = "<|audio_start|>"
AUDIO_END_TOKEN = "<|audio_end|>"
AUDIO_EMBED_TOKEN = "<|audio|>"
MODALITY_TOKENS = {
"text": MODALITY_TEXT_TOKEN,
"voice": MODALITY_VOICE_TOKEN,
"interleave": MODALITY_INTERLEAVE_TOKEN,
}
SEMANTIC_TOKEN_TEMPLATE = "<|semantic:{i}|>"
SEMANTIC_TOKENS = [SEMANTIC_TOKEN_TEMPLATE.format(i=i) for i in range(1024)]
# Warning: when you add a new special token, you should only add it to the end of the list.
ALL_SPECIAL_TOKENS = [
BOS_TOKEN,
EOS_TOKEN,
PAD_TOKEN,
IM_START_TOKEN,
IM_END_TOKEN,
PHONEME_START_TOKEN,
PHONEME_END_TOKEN,
TOOL_CALL_START_TOKEN,
TOOL_CALL_END_TOKEN,
MODALITY_TEXT_TOKEN,
MODALITY_VOICE_TOKEN,
MODALITY_INTERLEAVE_TOKEN,
AUDIO_START_TOKEN,
AUDIO_END_TOKEN,
AUDIO_EMBED_TOKEN,
*SEMANTIC_TOKENS,
]
class FishTokenizer:
def __init__(
self, model_path: str, special_tokens: list[str] = ALL_SPECIAL_TOKENS
) -> None:
mergeable_ranks = self.load_tiktoken_bpe(model_path)
special_token_begin = len(mergeable_ranks)
self.all_special_tokens_with_ids = {
token: special_token_begin + i for i, token in enumerate(special_tokens)
}
self.semantic_id_to_token_id = {}
end_idx = 0
for token in special_tokens:
if token.startswith("<|semantic:"):
idx = int(re.match(r"<\|semantic:(\d+)\|>", token).group(1))
self.semantic_id_to_token_id[idx] = self.all_special_tokens_with_ids[
token
]
if idx > end_idx:
end_idx = idx
self.semantic_begin_id = self.semantic_id_to_token_id[0]
self.semantic_end_id = self.semantic_id_to_token_id[end_idx]
self.tkt_model = tiktoken.core.Encoding(
name=Path(model_path).stem,
pat_str=FISH_TIKTOKEN_PATTERN,
mergeable_ranks=mergeable_ranks,
special_tokens=self.all_special_tokens_with_ids,
)
@property
def vocab_size(self):
return len(self.tkt_model._mergeable_ranks)
@property
def num_special_tokens(self):
return len(self.all_special_tokens_with_ids)
@staticmethod
def load_tiktoken_bpe(tiktoken_bpe_file: str) -> dict[bytes, int]:
data = {}
for line in open(tiktoken_bpe_file).read().splitlines():
if not line:
continue
token, rank = line.split()
if token == "=":
continue
data[base64.b64decode(token)] = int(rank)
return data
def get_token_id(self, token: str) -> int:
return self.all_special_tokens_with_ids[token]
def encode(self, s: str, allowed_special: bool | set[str] = True) -> list[int]:
assert isinstance(s, str)
subs = []
for i in range(0, len(s), TIKTOKEN_MAX_ENCODE_CHARS):
subs.append(s[i : i + TIKTOKEN_MAX_ENCODE_CHARS])
if allowed_special is True:
allowed_special = self.tkt_model.special_tokens_set
elif allowed_special is False:
allowed_special = set()
return sum(
self.tkt_model.encode_batch(
subs, allowed_special=allowed_special, disallowed_special=set()
),
start=[],
)
def decode(self, tokens: list[int]) -> str:
return self.tkt_model.decode(tokens)
def save_pretrained(self, path: str):
path = Path(path)
path.mkdir(parents=True, exist_ok=True)
with open(path / "tokenizer.tiktoken", "w") as f:
for token, rank in self.tkt_model._mergeable_ranks.items():
a = base64.b64encode(token).decode()
if a == "":
a = "="
f.write(f"{a} {rank}\n")
with open(path / "special_tokens.json", "w") as f:
json.dump(
self.all_special_tokens_with_ids,
f,
indent=2,
ensure_ascii=False,
)
@staticmethod
def from_pretrained(path: str):
special_tokens_path = Path(path) / "special_tokens.json"
if special_tokens_path.exists():
with open(special_tokens_path) as f:
all_special_tokens_with_ids = json.load(f)
else:
all_special_tokens_with_ids = ALL_SPECIAL_TOKENS
return FishTokenizer(
Path(path) / "tokenizer.tiktoken", all_special_tokens_with_ids
)
|