File size: 27,917 Bytes
ef43578
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4487539
 
 
 
 
 
 
 
ef43578
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
import gradio as gr
import torch
import numpy as np
import cv2
import albumentations as A
from albumentations.pytorch import ToTensorV2
from PIL import Image
import matplotlib.pyplot as plt
import torch.nn.functional as F
import os
import sys 

sys.path.append(os.path.dirname(os.path.abspath(__file__)))

import json
from models.can.can import CAN, create_can_model
from models.can.can_dataloader import Vocabulary, INPUT_HEIGHT, INPUT_WIDTH

# Load configuration
with open("config.json", "r") as json_file:
    cfg = json.load(json_file)
CAN_CONFIG = cfg["can"]

# Global constants
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
BACKBONE_TYPE = CAN_CONFIG["backbone_type"]
PRETRAINED_BACKBONE = True if CAN_CONFIG["pretrained_backbone"] == 1 else False
CHECKPOINT_PATH = f'checkpoints/{BACKBONE_TYPE}_can_best.pth' if not PRETRAINED_BACKBONE else f'checkpoints/p_{BACKBONE_TYPE}_can_best.pth'

# Modified process_img to accept numpy array and validate shapes
def process_img(image, convert_to_rgb=False):
    """
    Process a numpy array image: binarize, ensure black background, resize, and apply padding.

    Args:
        image: Numpy array (grayscale)
        convert_to_rgb: Whether to convert to RGB

    Returns:
        Processed image and crop information, or None if invalid
    """
    def is_effectively_binary(img, threshold_percentage=0.9):
        dark_pixels = np.sum(img < 20)
        bright_pixels = np.sum(img > 235)
        total_pixels = img.size
        return (dark_pixels + bright_pixels) / total_pixels > threshold_percentage

    def before_padding(image):
        if image.shape[0] < 2 or image.shape[1] < 2:
            return None, None  # Invalid image size
        
        # Ensure image is uint8
        if image.dtype != np.uint8:
            if image.max() <= 1.0:  # If image is normalized (0-1)
                image = (image * 255).astype(np.uint8)
            else:  # If image is in other float format
                image = np.clip(image, 0, 255).astype(np.uint8)
        
        edges = cv2.Canny(image, 50, 150)
        kernel = np.ones((7, 13), np.uint8)
        dilated = cv2.dilate(edges, kernel, iterations=8)
        num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(dilated, connectivity=8)
        sorted_components = sorted(range(1, num_labels), key=lambda i: stats[i, cv2.CC_STAT_AREA], reverse=True)
        best_f1 = 0
        best_crop = (0, 0, image.shape[1], image.shape[0])
        total_white_pixels = np.sum(dilated > 0)
        current_mask = np.zeros_like(dilated)
        x_min, y_min = image.shape[1], image.shape[0]
        x_max, y_max = 0, 0

        for component_idx in sorted_components:
            component_mask = labels == component_idx
            current_mask = np.logical_or(current_mask, component_mask)
            comp_y, comp_x = np.where(component_mask)
            if len(comp_x) > 0 and len(comp_y) > 0:
                x_min = min(x_min, np.min(comp_x))
                y_min = min(y_min, np.min(comp_y))
                x_max = max(x_max, np.max(comp_x))
                y_max = max(y_max, np.max(comp_y))
            width = x_max - x_min + 1
            height = y_max - y_min + 1
            if width < 2 or height < 2:
                continue
            crop_area = width * height
            crop_mask = np.zeros_like(dilated)
            crop_mask[y_min:y_max + 1, x_min:x_max + 1] = 1
            white_in_crop = np.sum(np.logical_and(dilated > 0, crop_mask > 0))
            precision = white_in_crop / crop_area if crop_area > 0 else 0
            recall = white_in_crop / total_white_pixels if total_white_pixels > 0 else 0
            f1 = 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else 0
            if f1 > best_f1:
                best_f1 = f1
                best_crop = (x_min, y_min, x_max, y_max)

        x_min, y_min, x_max, y_max = best_crop
        cropped_image = image[y_min:y_max + 1, x_min:x_max + 1]
        if cropped_image.shape[0] < 2 or cropped_image.shape[1] < 2:
            return None, None
        if is_effectively_binary(cropped_image):
            _, thresh = cv2.threshold(cropped_image, 127, 255, cv2.THRESH_BINARY)
        else:
            thresh = cv2.adaptiveThreshold(cropped_image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)
        white = np.sum(thresh == 255)
        black = np.sum(thresh == 0)
        if white > black:
            thresh = 255 - thresh
        denoised = cv2.medianBlur(thresh, 3)
        for _ in range(3):
            denoised = cv2.medianBlur(denoised, 3)
        result = cv2.copyMakeBorder(denoised, 5, 5, 5, 5, cv2.BORDER_CONSTANT, value=0)
        return result, best_crop

    if len(image.shape) != 2:
        return None, None  # Expect grayscale image
    
    # Ensure image is uint8 before processing
    if image.dtype != np.uint8:
        if image.max() <= 1.0:  # If image is normalized (0-1)
            image = (image * 255).astype(np.uint8)
        else:  # If image is in other float format
            image = np.clip(image, 0, 255).astype(np.uint8)
    
    bin_img, best_crop = before_padding(image)
    if bin_img is None:
        return None, None
    h, w = bin_img.shape
    if h < 2 or w < 2:
        return None, None
    new_w = int((INPUT_HEIGHT / h) * w)

    if new_w > INPUT_WIDTH:
        resized_img = cv2.resize(bin_img, (INPUT_WIDTH, INPUT_HEIGHT), interpolation=cv2.INTER_AREA)
    else:
        resized_img = cv2.resize(bin_img, (new_w, INPUT_HEIGHT), interpolation=cv2.INTER_AREA)
        padded_img = np.zeros((INPUT_HEIGHT, INPUT_WIDTH), dtype=np.uint8)
        x_offset = (INPUT_WIDTH - new_w) // 2
        padded_img[:, x_offset:x_offset + new_w] = resized_img
        resized_img = padded_img

    if convert_to_rgb:
        resized_img = cv2.cvtColor(resized_img, cv2.COLOR_GRAY2BGR)

    return resized_img, best_crop

# Load model and vocabulary
def load_checkpoint(checkpoint_path, device, pretrained_backbone=True, backbone='densenet'):
    checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)
    vocab = checkpoint.get('vocab')
    if vocab is None:
        vocab_path = os.path.join(os.path.dirname(checkpoint_path), 'hmer_vocab.pth')
        if os.path.exists(vocab_path):
            vocab_data = torch.load(vocab_path)
            vocab = Vocabulary()
            vocab.word2idx = vocab_data['word2idx']
            vocab.idx2word = vocab_data['idx2word']
            vocab.idx = vocab_data['idx']
            vocab.pad_token = vocab.word2idx['<pad>']
            vocab.start_token = vocab.word2idx['<start>']
            vocab.end_token = vocab.word2idx['<end>']
            vocab.unk_token = vocab.word2idx['<unk>']
        else:
            raise ValueError(f"Vocabulary not found in checkpoint and {vocab_path} does not exist")
    
    hidden_size = checkpoint.get('hidden_size', 256)
    embedding_dim = checkpoint.get('embedding_dim', 256)
    use_coverage = checkpoint.get('use_coverage', True)
    
    model = create_can_model(
        num_classes=len(vocab),
        hidden_size=hidden_size,
        embedding_dim=embedding_dim,
        use_coverage=use_coverage,
        pretrained_backbone=pretrained_backbone,
        backbone_type=backbone
    ).to(device)
    
    model.load_state_dict(checkpoint['model'])
    model.eval()
    return model, vocab

model, vocab = load_checkpoint(CHECKPOINT_PATH, DEVICE, PRETRAINED_BACKBONE, BACKBONE_TYPE)

# Image processing function for Gradio
def gradio_process_img(image, convert_to_rgb=False):
    # Convert Gradio image (PIL, numpy, or dict from Sketchpad) to grayscale numpy array
    if isinstance(image, dict):  # Handle Sketchpad input
        # The Sketchpad component returns a dict with 'background' and 'layers' keys
        # We need to combine the background and layers to get the final image
        background = np.array(image['background'])
        layers = image['layers']
        
        # Start with the background
        final_image = background.copy()
        
        # Add each layer on top
        for layer in layers:
            if layer is not None:  # Some layers might be None
                layer_img = np.array(layer)
                # Create a mask for non-transparent pixels
                mask = layer_img[..., 3] > 0
                # Replace pixels in final_image where mask is True, keeping the alpha channel
                final_image[mask] = layer_img[mask]
        
        # Convert to grayscale using the alpha channel
        if len(final_image.shape) == 3:
            # Use alpha channel to determine which pixels to keep
            alpha_mask = final_image[..., 3] > 0
            # Convert to grayscale using standard formula
            gray = np.dot(final_image[..., :3], [0.299, 0.587, 0.114])
            # Create a white background
            final_image = np.ones_like(gray) * 255
            # Apply the drawing where alpha > 0
            final_image[alpha_mask] = gray[alpha_mask]
            # Invert the image to get black on white
            final_image = 255 - final_image
    elif isinstance(image, Image.Image):
        image = np.array(image.convert('L'))
    elif isinstance(image, np.ndarray):
        if len(image.shape) == 3:
            image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
        elif len(image.shape) != 2:
            raise ValueError("Invalid image format: Expected grayscale or RGB image")
    else:
        raise ValueError("Unsupported image input type")
    
    # For Sketchpad input, use the final_image we created
    if isinstance(image, dict):
        image = final_image
    
    # Apply modified process_img
    processed_img, best_crop = process_img(image, convert_to_rgb=False)
    if processed_img is None:
        raise ValueError("Image processing failed: Resulted in invalid image size")
    
    # Prepare for model input
    transform = A.Compose([
        A.Normalize(mean=[0.0], std=[1.0]),
        ToTensorV2()
    ])
    processed_img = np.expand_dims(processed_img, axis=-1)  # [H, W, 1]
    image_tensor = transform(image=processed_img)['image'].unsqueeze(0).to(DEVICE)
    
    return image_tensor, processed_img, best_crop

# Model inference
def recognize_image(image_tensor, processed_img, best_crop):
    with torch.no_grad():
        predictions, _ = model.recognize(
            image_tensor,
            max_length=150,
            start_token=vocab.start_token,
            end_token=vocab.end_token,
            beam_width=5
        )
    
    # Convert indices to LaTeX tokens
    latex_tokens = []
    for idx in predictions:
        if idx == vocab.end_token:
            break
        if idx != vocab.start_token:
            latex_tokens.append(vocab.idx2word[idx])
    
    latex = ' '.join(latex_tokens)
    
    # Format LaTeX for rendering
    rendered_latex = f"$${latex}$$"
    
    return latex, rendered_latex

# Gradio interface function
def process_draw(image):
    if image is None:
        return "Please draw an expression", ""
    
    try:
        # Process image
        image_tensor, processed_img, best_crop = gradio_process_img(image)
        
        # Recognize
        latex, rendered_latex = recognize_image(image_tensor, processed_img, best_crop)
        
        return latex, rendered_latex
    except Exception as e:
        return f"Error processing image: {str(e)}", ""

def process_upload(image):
    if image is None:
        return "Please upload an image", ""
    
    try:
        # Process image
        image_tensor, processed_img, best_crop = gradio_process_img(image)
        
        # Recognize
        latex, rendered_latex = recognize_image(image_tensor, processed_img, best_crop)
        
        return latex, rendered_latex
    except Exception as e:
        return f"Error processing image: {str(e)}", ""

# Enhanced custom CSS with expanded input areas
custom_css = """
/* Global styles */
.gradio-container {
    max-width: 1400px !important;
    margin: 0 auto !important;
    font-family: 'Segoe UI', 'Roboto', sans-serif !important;
    padding: 1rem !important;
    box-sizing: border-box !important;
}

/* Header styling */
.header-title {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
    -webkit-background-clip: text !important;
    -webkit-text-fill-color: transparent !important;
    background-clip: text !important;
    text-align: center !important;
    font-size: clamp(1.8rem, 5vw, 2.5rem) !important;
    font-weight: 700 !important;
    margin-bottom: 1.5rem !important;
    text-shadow: 0 2px 4px rgba(0,0,0,0.1) !important;
    padding: 0 1rem !important;
}

/* Main container styling */
.main-container {
    background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%) !important;
    border-radius: 20px !important;
    padding: clamp(1rem, 3vw, 2rem) !important;
    box-shadow: 0 10px 30px rgba(0,0,0,0.1) !important;
    margin: 1rem 0 !important;
}

/* Input section styling - RESPONSIVE */
.input-section {
    background: white !important;
    border-radius: 15px !important;
    padding: clamp(1rem, 3vw, 2rem) !important;
    box-shadow: 0 4px 15px rgba(0,0,0,0.05) !important;
    border: 1px solid #e1e8ed !important;
    min-height: min(700px, 80vh) !important;
    width: 100% !important;
    box-sizing: border-box !important;
}

/* Output section styling - RESPONSIVE */
.output-section {
    background: white !important;
    border-radius: 15px !important;
    padding: clamp(1rem, 3vw, 1.5rem) !important;
    box-shadow: 0 4px 15px rgba(0,0,0,0.05) !important;
    border: 1px solid #e1e8ed !important;
    min-height: min(700px, 80vh) !important;
    width: 100% !important;
    box-sizing: border-box !important;
}

/* Tab styling - RESPONSIVE */
.tab-nav {
    background: #f8f9fa !important;
    border-radius: 10px !important;
    padding: 0.5rem !important;
    margin-bottom: 1.5rem !important;
    display: flex !important;
    flex-wrap: wrap !important;
    gap: 0.5rem !important;
}

.tab-nav button {
    border-radius: 8px !important;
    padding: clamp(0.5rem, 2vw, 0.75rem) clamp(1rem, 3vw, 1.5rem) !important;
    font-weight: 600 !important;
    transition: all 0.3s ease !important;
    border: none !important;
    background: transparent !important;
    color: #6c757d !important;
    font-size: clamp(0.9rem, 2vw, 1rem) !important;
    white-space: nowrap !important;
}

/* Sketchpad styling - RESPONSIVE */
.sketchpad-container {
    border: 3px dashed #667eea !important;
    border-radius: 15px !important;
    background: #fafbfc !important;
    transition: all 0.3s ease !important;
    overflow: hidden !important;
    min-height: min(500px, 60vh) !important;
    height: min(500px, 60vh) !important;
    width: 100% !important;
    box-sizing: border-box !important;
}

.sketchpad-container canvas {
    width: 100% !important;
    height: 100% !important;
    min-height: min(500px, 60vh) !important;
    touch-action: none !important;
}

/* Upload area styling - RESPONSIVE */
.upload-container {
    border: 3px dashed #667eea !important;
    border-radius: 15px !important;
    background: #fafbfc !important;
    padding: clamp(1.5rem, 5vw, 3rem) !important;
    text-align: center !important;
    transition: all 0.3s ease !important;
    min-height: min(500px, 60vh) !important;
    display: flex !important;
    flex-direction: column !important;
    justify-content: center !important;
    align-items: center !important;
    box-sizing: border-box !important;
}

.upload-container img {
    max-height: min(400px, 50vh) !important;
    max-width: 100% !important;
    object-fit: contain !important;
}

/* Button styling - RESPONSIVE */
.process-button {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
    border: none !important;
    border-radius: 12px !important;
    padding: clamp(0.8rem, 2vw, 1.2rem) clamp(1.5rem, 4vw, 2.5rem) !important;
    font-size: clamp(1rem, 2.5vw, 1.2rem) !important;
    font-weight: 600 !important;
    color: white !important;
    cursor: pointer !important;
    transition: all 0.3s ease !important;
    box-shadow: 0 4px 15px rgba(102, 126, 234, 0.3) !important;
    text-transform: uppercase !important;
    letter-spacing: 0.5px !important;
    width: 100% !important;
    margin-top: 1.5rem !important;
    white-space: nowrap !important;
}

/* Output text styling - RESPONSIVE */
.latex-output {
    background: #f8f9fa !important;
    border: 1px solid #e9ecef !important;
    border-radius: 10px !important;
    padding: clamp(1rem, 3vw, 1.5rem) !important;
    font-family: 'Monaco', 'Consolas', monospace !important;
    font-size: clamp(0.9rem, 2vw, 1rem) !important;
    line-height: 1.6 !important;
    min-height: min(200px, 30vh) !important;
    overflow-x: auto !important;
    white-space: pre-wrap !important;
    word-break: break-word !important;
}

.rendered-output {
    background: white !important;
    border: 1px solid #e9ecef !important;
    border-radius: 10px !important;
    padding: clamp(1.5rem, 4vw, 2.5rem) !important;
    text-align: center !important;
    min-height: min(300px, 40vh) !important;
    display: flex !important;
    align-items: center !important;
    justify-content: center !important;
    font-size: clamp(1.2rem, 3vw, 1.8rem) !important;
    overflow-x: auto !important;
}

/* Instructions styling - RESPONSIVE */
.instructions {
    background: linear-gradient(135deg, #84fab0 0%, #8fd3f4 100%) !important;
    border-radius: 12px !important;
    padding: clamp(1rem, 3vw, 1.5rem) !important;
    margin-bottom: clamp(1rem, 3vw, 2rem) !important;
    border-left: 4px solid #28a745 !important;
}

.instructions h3 {
    color: #155724 !important;
    margin-bottom: 0.8rem !important;
    font-weight: 600 !important;
    font-size: clamp(1rem, 2.5vw, 1.1rem) !important;
}

.instructions p {
    color: #155724 !important;
    margin: 0.5rem 0 !important;
    font-size: clamp(0.9rem, 2vw, 1rem) !important;
    line-height: 1.5 !important;
}

/* Drawing tips styling - RESPONSIVE */
.drawing-tips {
    background: linear-gradient(135deg, #ffecd2 0%, #fcb69f 100%) !important;
    border-radius: 10px !important;
    padding: clamp(0.8rem, 2vw, 1rem) !important;
    margin-top: 1rem !important;
    border-left: 4px solid #fd7e14 !important;
}

.drawing-tips h4 {
    color: #8a4100 !important;
    margin-bottom: 0.5rem !important;
    font-weight: 600 !important;
    font-size: clamp(0.9rem, 2vw, 1rem) !important;
}

.drawing-tips ul {
    color: #8a4100 !important;
    margin: 0 !important;
    padding-left: clamp(1rem, 3vw, 1.5rem) !important;
}

.drawing-tips li {
    margin: 0.3rem 0 !important;
    font-size: clamp(0.8rem, 1.8vw, 0.9rem) !important;
}

/* Full-width layout adjustments - RESPONSIVE */
.input-output-container {
    display: grid !important;
    grid-template-columns: repeat(auto-fit, minmax(min(100%, 600px), 1fr)) !important;
    gap: clamp(1rem, 3vw, 2rem) !important;
    align-items: start !important;
    width: 100% !important;
    box-sizing: border-box !important;
}

/* Examples section - RESPONSIVE */
.examples-grid {
    display: grid !important;
    grid-template-columns: repeat(auto-fit, minmax(min(100%, 250px), 1fr)) !important;
    gap: clamp(1rem, 3vw, 1.5rem) !important;
    text-align: center !important;
}

.example-card {
    padding: clamp(1rem, 3vw, 1.5rem) !important;
    background: linear-gradient(135deg, #f8f9fa 0%, #e9ecef 100%) !important;
    border-radius: 12px !important;
    border: 2px solid #dee2e6 !important;
}

.example-card strong {
    color: #495057 !important;
    font-size: clamp(0.9rem, 2.5vw, 1.1rem) !important;
    display: block !important;
    margin-bottom: 0.5rem !important;
}

.example-card span {
    font-family: monospace !important;
    color: #6c757d !important;
    font-size: clamp(0.8rem, 2vw, 0.9rem) !important;
    line-height: 1.6 !important;
}

/* Performance metrics section - RESPONSIVE */
.metrics-grid {
    display: grid !important;
    grid-template-columns: repeat(auto-fit, minmax(min(100%, 200px), 1fr)) !important;
    gap: clamp(0.8rem, 2vw, 1rem) !important;
}

.metric-item {
    text-align: center !important;
    padding: clamp(0.5rem, 2vw, 1rem) !important;
}

.metric-item strong {
    color: #e65100 !important;
    font-size: clamp(0.9rem, 2.5vw, 1rem) !important;
    display: block !important;
    margin-bottom: 0.3rem !important;
}

.metric-item span {
    color: #bf360c !important;
    font-size: clamp(0.8rem, 2vw, 0.9rem) !important;
}

/* Responsive breakpoints */
@media (max-width: 1200px) {
    .gradio-container {
        padding: 0.8rem !important;
    }
}

@media (max-width: 768px) {
    .gradio-container {
        padding: 0.5rem !important;
    }
    
    .main-container {
        padding: 0.8rem !important;
        margin: 0.5rem 0 !important;
    }
    
    .input-section, .output-section {
        padding: 0.8rem !important;
    }
    
    .tab-nav {
        flex-direction: column !important;
    }
    
    .tab-nav button {
        width: 100% !important;
    }
}

@media (max-width: 480px) {
    .gradio-container {
        padding: 0.3rem !important;
    }
    
    .main-container {
        padding: 0.5rem !important;
        margin: 0.3rem 0 !important;
    }
    
    .input-section, .output-section {
        padding: 0.5rem !important;
    }
    
    .process-button {
        padding: 0.8rem 1.2rem !important;
        font-size: 0.9rem !important;
    }
}

/* Touch device optimizations */
@media (hover: none) {
    .process-button:hover {
        transform: none !important;
    }
    
    .sketchpad-container {
        touch-action: none !important;
        -webkit-touch-callout: none !important;
        -webkit-user-select: none !important;
        user-select: none !important;
    }
    
    .tab-nav button {
        padding: 1rem !important;
    }
}

/* Print styles */
@media print {
    .gradio-container {
        max-width: 100% !important;
        padding: 0 !important;
    }
    
    .input-section, .output-section {
        break-inside: avoid !important;
    }
    
    .process-button, .tab-nav {
        display: none !important;
    }
}
"""

# Create the enhanced Gradio interface with expanded input
with gr.Blocks(css=custom_css, title="Math Expression Recognition") as demo:
    gr.HTML('<h1 class="header-title">๐Ÿงฎ Handwritten Mathematical Expression Recognition</h1>')
    
    # Enhanced Instructions
    gr.HTML("""
    <div class="instructions">
        <h3>๐Ÿ“ How to use this expanded interface:</h3>
        <p><strong>โœ๏ธ Draw Tab:</strong> Use the large drawing canvas (800x500px) to draw mathematical expressions with your mouse or touch device</p>
        <p><strong>๐Ÿ“ Upload Tab:</strong> Upload high-resolution images containing handwritten mathematical expressions</p>
        <p><strong>๐ŸŽฏ Tips:</strong> Write clearly, use proper mathematical notation, and ensure good contrast between your writing and the background</p>
    </div>
    """)
    
    with gr.Row(elem_classes="input-output-container"):
        # Expanded Input Section
        with gr.Column(elem_classes="input-section"):
            gr.HTML('<h2 style="text-align: center; color: #667eea; margin-bottom: 1.5rem; font-size: 1.5rem;">๐Ÿ“ฅ Input Area</h2>')
            
            with gr.Tabs():
                with gr.TabItem("โœ๏ธ Draw Expression"):
                    gr.HTML("""
                    <div class="drawing-tips">
                        <h4>๐ŸŽจ Drawing Tips:</h4>
                        <ul>
                            <li>Use clear, legible handwriting</li>
                            <li>Draw symbols at reasonable sizes</li>
                            <li>Leave space between different parts</li>
                            <li>Use standard mathematical notation</li>
                            <li>Avoid overlapping symbols</li>
                        </ul>
                    </div>
                    """)
                    
                    # Add brush size instruction
                    gr.HTML("""
                    <div class="brush-instruction" style="background: #e3f2fd; border: 1px solid #2196f3; border-radius: 8px; padding: 1rem; margin-bottom: 1rem; color: #1565c0;">
                        <strong>๐Ÿ–Œ๏ธ Brush Size:</strong> Look for brush size controls in the drawing interface, or try different drawing pressures. 
                        For best results with math expressions, use a medium brush thickness.
                    </div>
                    """)
                    
                    draw_input = gr.Sketchpad(
                        label="Draw your mathematical expression here",
                        elem_classes="sketchpad-container",
                        height=500,
                        width=800,
                        canvas_size=(800, 500)
                    )
                    draw_button = gr.Button("๐Ÿš€ Recognize Drawn Expression", elem_classes="process-button")
                
                with gr.TabItem("๐Ÿ“ Upload Image"):
                    gr.HTML("""
                    <div class="drawing-tips">
                        <h4>๐Ÿ“ท Upload Tips:</h4>
                        <ul>
                            <li>Use high-resolution images (minimum 300 DPI)</li>
                            <li>Ensure good lighting and contrast</li>
                            <li>Crop the image to focus on the expression</li>
                            <li>Avoid shadows or glare</li>
                            <li>Supported formats: PNG, JPG, JPEG</li>
                        </ul>
                    </div>
                    """)
                    
                    upload_input = gr.Image(
                        label="Upload your mathematical expression image",
                        elem_classes="upload-container",
                        height=500,
                        type="pil"
                    )
                    upload_button = gr.Button("๐Ÿš€ Recognize Uploaded Expression", elem_classes="process-button")
        
        # Output Section
        with gr.Column(elem_classes="output-section"):
            gr.HTML('<h2 style="text-align: center; color: #667eea; margin-bottom: 1.5rem; font-size: 1.5rem;">๐Ÿ“ค Recognition Results</h2>')
            
            with gr.Tabs():
                with gr.TabItem("๐Ÿ“„ LaTeX Code"):
                    latex_output = gr.Textbox(
                        label="Generated LaTeX Code",
                        elem_classes="latex-output",
                        lines=8,
                        placeholder="Your LaTeX code will appear here...\n\nThis is the raw LaTeX markup that represents your mathematical expression. You can copy this code and use it in any LaTeX document or LaTeX-compatible system.",
                        interactive=False
                    )
                
                with gr.TabItem("๐ŸŽจ Rendered Expression"):
                    rendered_output = gr.Markdown(
                        label="Rendered Mathematical Expression",
                        elem_classes="rendered-output",
                        value="*Your beautifully rendered mathematical expression will appear here...*\n\n*Draw or upload an expression to see the magic happen!*"
                    )
    
    # Connect the buttons to their respective functions
    draw_button.click(
        fn=process_draw,
        inputs=[draw_input],
        outputs=[latex_output, rendered_output]
    )
    
    upload_button.click(
        fn=process_upload,
        inputs=[upload_input],
        outputs=[latex_output, rendered_output]
    )

if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True,
        inbrowser=True
    )