File size: 32,347 Bytes
89ae6ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
import math
"""Custom DenseNet Backbone"""
class DenseBlock(nn.Module):
"""
Basic DenseNet block
"""
def __init__(self, in_channels, growth_rate, num_layers):
super(DenseBlock, self).__init__()
self.layers = nn.ModuleList()
for i in range(num_layers):
self.layers.append(self._make_layer(in_channels + i * growth_rate, growth_rate))
def _make_layer(self, in_channels, growth_rate):
layer = nn.Sequential(
nn.BatchNorm2d(in_channels),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels, 4 * growth_rate, kernel_size=1, bias=False),
nn.BatchNorm2d(4 * growth_rate),
nn.ReLU(inplace=True),
nn.Conv2d(4 * growth_rate, growth_rate, kernel_size=3, padding=1, bias=False)
)
return layer
def forward(self, x):
features = [x]
for layer in self.layers:
new_feature = layer(torch.cat(features, dim=1))
features.append(new_feature)
return torch.cat(features, dim=1)
class TransitionLayer(nn.Module):
"""
Transition layer between DenseBlocks
"""
def __init__(self, in_channels, out_channels):
super(TransitionLayer, self).__init__()
self.transition = nn.Sequential(
nn.BatchNorm2d(in_channels),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False),
nn.AvgPool2d(kernel_size=2, stride=2)
)
def forward(self, x):
return self.transition(x)
class DenseNetBackbone(nn.Module):
"""
DenseNet backbone for CAN
"""
def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64):
super(DenseNetBackbone, self).__init__()
# Initial layer
self.features = nn.Sequential(
nn.Conv2d(1, num_init_features, kernel_size=7, stride=2, padding=3, bias=False),
nn.BatchNorm2d(num_init_features),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
)
# DenseBlocks
num_features = num_init_features
for i, num_layers in enumerate(block_config):
block = DenseBlock(num_features, growth_rate, num_layers)
self.features.add_module(f'denseblock{i+1}', block)
num_features = num_features + growth_rate * num_layers
if i != len(block_config) - 1:
trans = TransitionLayer(num_features, num_features // 2)
self.features.add_module(f'transition{i+1}', trans)
num_features = num_features // 2
# Final processing
self.features.add_module('norm5', nn.BatchNorm2d(num_features))
self.features.add_module('relu5', nn.ReLU(inplace=True))
self.out_channels = num_features # 684 (with default configuration)
def forward(self, x):
return self.features(x)
"""Pretrained DenseNet"""
class DenseNetFeatureExtractor(nn.Module):
def __init__(self, densenet_model, out_channels=684):
super().__init__()
# Change input conv to 1 channel
self.conv0 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
# Copy pretrained weights (average over RGB channels)
self.conv0.weight.data = densenet_model.features.conv0.weight.data.mean(dim=1, keepdim=True)
self.features = densenet_model.features
self.out_channels = out_channels
# Add a 1x1 conv to match your expected output channels if needed
self.final_conv = nn.Conv2d(1024, out_channels, kernel_size=1)
self.final_bn = nn.BatchNorm2d(out_channels)
self.final_relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv0(x)
x = self.features.norm0(x)
x = self.features.relu0(x)
x = self.features.pool0(x)
x = self.features.denseblock1(x)
x = self.features.transition1(x)
x = self.features.denseblock2(x)
x = self.features.transition2(x)
x = self.features.denseblock3(x)
x = self.features.transition3(x)
x = self.features.denseblock4(x)
x = self.features.norm5(x)
x = self.final_conv(x)
x = self.final_bn(x)
x = self.final_relu(x)
return x
"""Custom ResNet Backbone"""
class BasicBlock(nn.Module):
"""
Basic ResNet block
"""
expansion = 1
def __init__(self, in_channels, out_channels, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels * self.expansion:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels * self.expansion, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels * self.expansion)
)
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += self.shortcut(identity)
out = self.relu(out)
return out
class Bottleneck(nn.Module):
"""
Bottleneck ResNet block
"""
expansion = 4
def __init__(self, in_channels, out_channels, stride=1):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.conv3 = nn.Conv2d(out_channels, out_channels * self.expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(out_channels * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels * self.expansion:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels * self.expansion, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels * self.expansion)
)
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
out += self.shortcut(identity)
out = self.relu(out)
return out
class ResNetBackbone(nn.Module):
"""
ResNet backbone for CAN model, designed to output similar dimensions as DenseNet
"""
def __init__(self, block_type='bottleneck', layers=[3, 4, 6, 3], num_init_features=64):
super(ResNetBackbone, self).__init__()
# Initial layer
self.conv1 = nn.Conv2d(1, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(num_init_features)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
# Define block type
if block_type == 'basic':
block = BasicBlock
expansion = 1
elif block_type == 'bottleneck':
block = Bottleneck
expansion = 4
else:
raise ValueError(f"Unknown block type: {block_type}")
# Create layers
self.layer1 = self._make_layer(block, num_init_features, 64, layers[0], stride=1)
self.layer2 = self._make_layer(block, 64 * expansion, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 128 * expansion, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 256 * expansion, 512, layers[3], stride=2)
# Final processing to match DenseNet output channels
self.final_conv = nn.Conv2d(512 * expansion, 684, kernel_size=1)
self.final_bn = nn.BatchNorm2d(684)
self.final_relu = nn.ReLU(inplace=True)
self.out_channels = 684 # Match DenseNet output channels
# Initialize weights
self._initialize_weights()
def _make_layer(self, block, in_channels, out_channels, num_blocks, stride):
layers = []
layers.append(block(in_channels, out_channels, stride))
for _ in range(1, num_blocks):
layers.append(block(out_channels * block.expansion, out_channels))
return nn.Sequential(*layers)
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.final_conv(x)
x = self.final_bn(x)
x = self.final_relu(x)
return x
"""Pretrained ResNet"""
class ResNetFeatureExtractor(nn.Module):
def __init__(self, resnet_model, out_channels=684):
super().__init__()
# Change input conv to 1 channel
self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.conv1.weight.data = resnet_model.conv1.weight.data.sum(dim=1, keepdim=True) # average weights if needed
self.bn1 = resnet_model.bn1
self.relu = resnet_model.relu
self.maxpool = resnet_model.maxpool
self.layer1 = resnet_model.layer1
self.layer2 = resnet_model.layer2
self.layer3 = resnet_model.layer3
self.layer4 = resnet_model.layer4
# Add a 1x1 conv to match DenseNet output channels if needed
self.final_conv = nn.Conv2d(2048, out_channels, kernel_size=1)
self.final_bn = nn.BatchNorm2d(out_channels)
self.final_relu = nn.ReLU(inplace=True)
self.out_channels = out_channels
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.final_conv(x)
x = self.final_bn(x)
x = self.final_relu(x)
return x
"""Channel Attention"""
class ChannelAttention(nn.Module):
"""
Channel-wise attention mechanism
"""
def __init__(self, in_channels, ratio=16):
super(ChannelAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc = nn.Sequential(
nn.Conv2d(in_channels, in_channels // ratio, kernel_size=1, bias=False),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels // ratio, in_channels, kernel_size=1, bias=False)
)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = self.fc(self.avg_pool(x))
max_out = self.fc(self.max_pool(x))
out = avg_out + max_out
return self.sigmoid(out)
"""Multi-scale Couting Module"""
class MSCM(nn.Module):
"""
Multi-Scale Counting Module
"""
def __init__(self, in_channels, num_classes):
super(MSCM, self).__init__()
# Branch 1: 3x3 kernel
self.branch1 = nn.Sequential(
nn.Conv2d(in_channels, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Dropout2d(p=0.2)
)
self.attention1 = ChannelAttention(256)
# Branch 2: 5x5 kernel
self.branch2 = nn.Sequential(
nn.Conv2d(in_channels, 256, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.Dropout2d(p=0.2)
)
self.attention2 = ChannelAttention(256)
# 1x1 Conv layer to reduce channels and create counting map
self.conv_reduce = nn.Conv2d(512, num_classes, kernel_size=1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
# Process branch 1
out1 = self.branch1(x)
out1 = out1 * self.attention1(out1)
# Process branch 2
out2 = self.branch2(x)
out2 = out2 * self.attention2(out2)
# Concatenate features from both branches
concat_features = torch.cat([out1, out2], dim=1) # Shape: B x 512 x H x W
# Create counting map
count_map = self.sigmoid(self.conv_reduce(concat_features)) # Shape: B x C x H x W
# Apply sum-pooling to create 1D counting vector
# Sum over the entire feature map along height and width
count_vector = torch.sum(count_map, dim=(2, 3)) # Shape: B x C
return count_map, count_vector
"""Positional Encoding"""
class PositionalEncoding(nn.Module):
"""
Positional encoding for attention decoder
"""
def __init__(self, d_model, max_seq_len=1024):
super(PositionalEncoding, self).__init__()
self.d_model = d_model
# Create positional encoding matrix
pe = torch.zeros(max_seq_len, d_model)
position = torch.arange(0, max_seq_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe)
def forward(self, x):
# x shape: B x H x W x d_model
b, h, w, _ = x.shape
# Ensure we have enough positional encodings for the feature map size
if h*w > self.pe.size(0): #type: ignore
# Dynamically extend positional encodings if needed
device = self.pe.device
extended_pe = torch.zeros(h*w, self.d_model, device=device) #type: ignore
position = torch.arange(0, h*w, dtype=torch.float, device=device).unsqueeze(1) #type: ignore
div_term = torch.exp(torch.arange(0, self.d_model, 2, device=device).float() * (-math.log(10000.0) / self.d_model)) #type: ignore
extended_pe[:, 0::2] = torch.sin(position * div_term)
extended_pe[:, 1::2] = torch.cos(position * div_term)
pos_encoding = extended_pe.view(h, w, -1)
else:
# Use pre-computed positional encodings
pos_encoding = self.pe[:h*w].view(h, w, -1) #type: ignore
pos_encoding = pos_encoding.unsqueeze(0).expand(b, -1, -1, -1) # B x H x W x d_model
return pos_encoding
"""Counting-combined Attentional Decoder"""
class CCAD(nn.Module):
"""
Counting-Combined Attentional Decoder
"""
def __init__(self, input_channels, hidden_size, embedding_dim, num_classes, use_coverage=True):
super(CCAD, self).__init__()
self.hidden_size = hidden_size
self.embedding_dim = embedding_dim
self.use_coverage = use_coverage
# Input layer to reduce feature map
self.feature_proj = nn.Conv2d(input_channels, hidden_size * 2, kernel_size=1)
# Positional encoding
self.pos_encoder = PositionalEncoding(hidden_size * 2)
# Embedding layer for output symbols
self.embedding = nn.Embedding(num_classes, embedding_dim)
# GRU cell
self.gru = nn.GRUCell(embedding_dim + hidden_size + num_classes, hidden_size)
# Attention
self.attention_w = nn.Linear(hidden_size * 2, hidden_size)
self.attention_v = nn.Linear(hidden_size, 1)
if use_coverage:
self.coverage_proj = nn.Linear(1, hidden_size)
# Output layer
self.out = nn.Linear(hidden_size + hidden_size + num_classes, num_classes)
self.dropout = nn.Dropout(p=0.3)
def forward(self, feature_map, count_vector, target=None, teacher_forcing_ratio=0.5, max_len=200):
batch_size = feature_map.size(0)
device = feature_map.device
# Transform feature map
projected_features = self.feature_proj(feature_map) # B x 2*hidden_size x H x W
H, W = projected_features.size(2), projected_features.size(3)
# Reshape feature map to B x H*W x 2*hidden_size
projected_features = projected_features.permute(0, 2, 3, 1).contiguous() # B x H x W x 2*hidden_size
# Add positional encoding
pos_encoding = self.pos_encoder(projected_features) # B x H x W x 2*hidden_size
projected_features = projected_features + pos_encoding
# Reshape for attention processing
projected_features = projected_features.view(batch_size, H*W, -1) # B x H*W x 2*hidden_size
# Initialize initial hidden state
h_t = torch.zeros(batch_size, self.hidden_size, device=device)
# Initialize coverage attention if used
if self.use_coverage:
coverage = torch.zeros(batch_size, H*W, 1, device=device)
# First <SOS> token
y_t_1 = torch.ones(batch_size, dtype=torch.long, device=device)
# Prepare target sequence if provided
if target is not None:
max_len = target.size(1)
# Array to store predictions
outputs = torch.zeros(batch_size, max_len, self.embedding.num_embeddings, device=device)
for t in range(max_len):
# Apply embedding to the previous symbol
embedded = self.embedding(y_t_1) # B x embedding_dim
# Compute attention
attention_input = self.attention_w(projected_features) # B x H*W x hidden_size
# Add coverage attention if used
if self.use_coverage:
coverage_input = self.coverage_proj(coverage.float()) #type: ignore
attention_input = attention_input + coverage_input
# Add hidden state to attention
h_expanded = h_t.unsqueeze(1).expand(-1, H*W, -1) # B x H*W x hidden_size
attention_input = torch.tanh(attention_input + h_expanded)
# Compute attention weights
e_t = self.attention_v(attention_input).squeeze(-1) # B x H*W
alpha_t = F.softmax(e_t, dim=1) # B x H*W
# Update coverage if used
if self.use_coverage:
coverage = coverage + alpha_t.unsqueeze(-1) #type: ignore
# Compute context vector
alpha_t = alpha_t.unsqueeze(1) # B x 1 x H*W
context = torch.bmm(alpha_t, projected_features).squeeze(1) # B x 2*hidden_size
context = context[:, :self.hidden_size] # Take the first half as context vector
# Combine embedding, context vector, and count vector
gru_input = torch.cat([embedded, context, count_vector], dim=1)
# Update hidden state
h_t = self.gru(gru_input, h_t)
# Predict output symbol
output = self.out(torch.cat([h_t, context, count_vector], dim=1))
outputs[:, t] = output
# Decide the next input symbol
if target is not None and torch.rand(1).item() < teacher_forcing_ratio:
y_t_1 = target[:, t]
else:
# Greedy decoding
_, y_t_1 = output.max(1)
return outputs
"""Full model CAN (Counting-Aware Network)"""
class CAN(nn.Module):
"""
Counting-Aware Network for handwritten mathematical expression recognition
"""
def __init__(self, num_classes, backbone=None, hidden_size=256, embedding_dim=256, use_coverage=True):
super(CAN, self).__init__()
# Backbone
if backbone is None:
self.backbone = DenseNetBackbone()
else:
self.backbone = backbone
backbone_channels = self.backbone.out_channels
# Multi-Scale Counting Module
self.mscm = MSCM(backbone_channels, num_classes)
# Counting-Combined Attentional Decoder
self.decoder = CCAD(
input_channels=backbone_channels,
hidden_size=hidden_size,
embedding_dim=embedding_dim,
num_classes=num_classes,
use_coverage=use_coverage
)
# Save parameters for later use
self.hidden_size = hidden_size
self.embedding_dim = embedding_dim
self.num_classes = num_classes
self.use_coverage = use_coverage
def init_hidden_state(self, visual_features):
"""
Initialize hidden state and cell state for LSTM
Args:
visual_features: Visual features from backbone
Returns:
h, c: Initial hidden and cell states
"""
batch_size = visual_features.size(0)
device = visual_features.device
# Initialize hidden state with zeros
h = torch.zeros(1, batch_size, self.hidden_size, device=device)
c = torch.zeros(1, batch_size, self.hidden_size, device=device)
return h, c
def forward(self, x, target=None, teacher_forcing_ratio=0.5):
# Extract features from backbone
features = self.backbone(x)
# Compute count map and count vector from MSCM
count_map, count_vector = self.mscm(features)
# Decode with CCAD
outputs = self.decoder(features, count_vector, target, teacher_forcing_ratio)
return outputs, count_vector
def calculate_loss(self, outputs, targets, count_vectors, count_targets, lambda_count=0.01):
"""
Compute the combined loss function for CAN
Args:
outputs: Predicted output sequence from decoder
targets: Actual target sequence
count_vectors: Predicted count vector
count_targets: Actual target count vector
lambda_count: Weight for counting loss
Returns:
Total loss: L = L_cls + λ * L_counting
"""
# Loss for decoder (cross entropy)
L_cls = F.cross_entropy(outputs.view(-1, outputs.size(-1)), targets.view(-1))
# Loss for counting (MSE)
L_counting = F.smooth_l1_loss(count_vectors / self.num_classes, count_targets / self.num_classes)
# Total loss
total_loss = L_cls + lambda_count * L_counting
return total_loss, L_cls, L_counting
def recognize(self, images, max_length=150, start_token=None, end_token=None, beam_width=5):
"""
Recognize the handwritten expression using beam search (batch_size=1 only).
Args:
images: Input image tensor, shape (1, channels, height, width)
max_length: Maximum length of the output sequence
start_token: Start token index
end_token: End token index
beam_width: Beam width for beam search
Returns:
best_sequence: List of token indices
attention_weights: List of attention weights for visualization
"""
if images.size(0) != 1:
raise ValueError("Beam search is implemented only for batch_size=1")
device = images.device
# Encode the image
visual_features = self.backbone(images)
# Get count vector
_, count_vector = self.mscm(visual_features)
# Prepare feature map for decoder
projected_features = self.decoder.feature_proj(visual_features) # (1, 2*hidden_size, H, W)
H, W = projected_features.size(2), projected_features.size(3)
projected_features = projected_features.permute(0, 2, 3, 1).contiguous() # (1, H, W, 2*hidden_size)
pos_encoding = self.decoder.pos_encoder(projected_features) # (1, H, W, 2*hidden_size)
projected_features = projected_features + pos_encoding # (1, H, W, 2*hidden_size)
projected_features = projected_features.view(1, H*W, -1) # (1, H*W, 2*hidden_size)
# Initialize beams
beam_sequences = [torch.tensor([start_token], device=device)] * beam_width # List of (seq_len) tensors
beam_scores = torch.zeros(beam_width, device=device) # (beam_width)
h_t = torch.zeros(beam_width, self.hidden_size, device=device) # (beam_width, hidden_size)
if self.use_coverage:
coverage = torch.zeros(beam_width, H*W, device=device) # (beam_width, H*W)
all_attention_weights = []
for step in range(max_length):
# Get current tokens for all beams
current_tokens = torch.tensor([seq[-1] for seq in beam_sequences], device=device) # (beam_width)
# Apply embedding
embedded = self.decoder.embedding(current_tokens) # (beam_width, embedding_dim)
# Compute attention for each beam
attention_input = self.decoder.attention_w(projected_features.expand(beam_width, -1, -1)) # (beam_width, H*W, hidden_size)
if self.use_coverage:
coverage_input = self.decoder.coverage_proj(coverage.unsqueeze(-1)) # (beam_width, H*W, hidden_size) #type: ignore
attention_input = attention_input + coverage_input
h_expanded = h_t.unsqueeze(1).expand(-1, H*W, -1) # (beam_width, H*W, hidden_size)
attention_input = torch.tanh(attention_input + h_expanded)
e_t = self.decoder.attention_v(attention_input).squeeze(-1) # (beam_width, H*W)
alpha_t = F.softmax(e_t, dim=1) # (beam_width, H*W)
all_attention_weights.append(alpha_t.detach())
if self.use_coverage:
coverage = coverage + alpha_t #type: ignore
context = torch.bmm(alpha_t.unsqueeze(1), projected_features.expand(beam_width, -1, -1)).squeeze(1) # (beam_width, 2*hidden_size)
context = context[:, :self.hidden_size] # (beam_width, hidden_size)
# Expand count_vector to (beam_width, num_classes)
count_vector_expanded = count_vector.expand(beam_width, -1) # (beam_width, num_classes)
gru_input = torch.cat([embedded, context, count_vector_expanded], dim=1) # (beam_width, embedding_dim + hidden_size + num_classes)
h_t = self.decoder.gru(gru_input, h_t) # (beam_width, hidden_size)
output = self.decoder.out(torch.cat([h_t, context, count_vector_expanded], dim=1)) # (beam_width, num_classes)
scores = F.log_softmax(output, dim=1) # (beam_width, num_classes)
# Compute new scores for all beam-token combinations
new_beam_scores = beam_scores.unsqueeze(1) + scores # (beam_width, num_classes)
new_beam_scores_flat = new_beam_scores.view(-1) # (beam_width * num_classes)
# Select top beam_width scores and indices
topk_scores, topk_indices = new_beam_scores_flat.topk(beam_width)
# Determine which beam and token each top score corresponds to
beam_indices = topk_indices // self.num_classes # (beam_width)
token_indices = topk_indices % self.num_classes # (beam_width)
# Create new beam sequences and states
new_beam_sequences = []
new_h_t = []
if self.use_coverage:
new_coverage = []
for i in range(beam_width):
prev_beam_idx = beam_indices[i].item()
token = token_indices[i].item()
new_seq = torch.cat([beam_sequences[prev_beam_idx], torch.tensor([token], device=device)]) #type: ignore
new_beam_sequences.append(new_seq)
new_h_t.append(h_t[prev_beam_idx])
if self.use_coverage:
new_coverage.append(coverage[prev_beam_idx]) #type: ignore
# Update beams
beam_sequences = new_beam_sequences
beam_scores = topk_scores
h_t = torch.stack(new_h_t)
if self.use_coverage:
coverage = torch.stack(new_coverage) #type: ignore
# Select the sequence with the highest score
best_idx = beam_scores.argmax()
best_sequence = beam_sequences[best_idx].tolist()
# Remove <start> and stop at <end>
if best_sequence[0] == start_token:
best_sequence = best_sequence[1:]
if end_token in best_sequence:
end_idx = best_sequence.index(end_token)
best_sequence = best_sequence[:end_idx]
return best_sequence, all_attention_weights
def create_can_model(num_classes, hidden_size=256, embedding_dim=256, use_coverage=True, pretrained_backbone=False, backbone_type='densenet'):
"""
Create CAN model with either DenseNet or ResNet backbone
Args:
num_classes: Number of symbol classes
pretrained_backbone: Whether to use a pretrained backbone
backbone_type: Type of backbone to use ('densenet' or 'resnet')
Returns:
CAN model
"""
# Create backbone
if backbone_type == 'densenet':
if pretrained_backbone:
densenet = models.densenet121(pretrained=True)
backbone = DenseNetFeatureExtractor(densenet, out_channels=684)
else:
backbone = DenseNetBackbone()
elif backbone_type == 'resnet':
if pretrained_backbone:
resnet = models.resnet50(pretrained=True)
backbone = ResNetFeatureExtractor(resnet, out_channels=684)
else:
backbone = ResNetBackbone(block_type='bottleneck', layers=[3, 4, 6, 3])
else:
raise ValueError(f"Unknown backbone type: {backbone_type}")
# Create model
model = CAN(
num_classes=num_classes,
backbone=backbone,
hidden_size=hidden_size,
embedding_dim=embedding_dim,
use_coverage=use_coverage
)
return model
# # Example usage
# if __name__ == "__main__":
# # Create CAN model with 101 symbol classes (example)
# num_classes = 101 # Number of symbol classes + special tokens like <SOS>, <EOS>
# model = create_can_model(num_classes)
# # Create dummy input data
# batch_size = 4
# input_image = torch.randn(batch_size, 1, 128, 384) # B x C x H x W
# target = torch.randint(0, num_classes, (batch_size, 50)) # B x max_len
# # Forward pass
# outputs, count_vectors = model(input_image, target)
# # Print output shapes
# print(f"Outputs shape: {outputs.shape}") # B x max_len x num_classes
# print(f"Count vectors shape: {count_vectors.shape}") # B x num_classes |