File size: 17,174 Bytes
324b9ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 |
import os
import torch
from torch.utils.data import Dataset, DataLoader, ConcatDataset
import albumentations as A
from PIL import Image
import pandas as pd
import cv2
import numpy as np
from collections import Counter
import json
with open("config.json", "r") as json_file:
cfg = json.load(json_file)
CAN_CONFIG = cfg["can"]
# Global constants
INPUT_HEIGHT = CAN_CONFIG["input_height"]
INPUT_WIDTH = CAN_CONFIG["input_width"]
BASE_DIR = CAN_CONFIG["base_dir"]
BATCH_SIZE = CAN_CONFIG["batch_size"]
NUM_WORKERS = CAN_CONFIG["num_workers"]
def is_effectively_binary(img, threshold_percentage=0.9):
dark_pixels = np.sum(img < 20)
bright_pixels = np.sum(img > 235)
total_pixels = img.size
return (dark_pixels + bright_pixels) / total_pixels > threshold_percentage
def before_padding(image):
# Apply Canny edge detector to find text edges
edges = cv2.Canny(image, 50, 150)
# Apply dilation to connect nearby edges
kernel = np.ones((7, 13), np.uint8)
dilated = cv2.dilate(edges, kernel, iterations=8)
# Find connected components
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(
dilated, connectivity=8
)
# Optimize crop rectangle using F1 score
# Sort components by number of white pixels (excluding background which is label 0)
sorted_components = sorted(
range(1, num_labels), key=lambda i: stats[i, cv2.CC_STAT_AREA], reverse=True
)
# Initialize with empty crop
best_f1 = 0
best_crop = (0, 0, image.shape[1], image.shape[0])
total_white_pixels = np.sum(dilated > 0)
current_mask = np.zeros_like(dilated)
x_min, y_min = image.shape[1], image.shape[0]
x_max, y_max = 0, 0
for component_idx in sorted_components:
# Add this component to our mask
component_mask = labels == component_idx
current_mask = np.logical_or(current_mask, component_mask)
# Update bounding box
comp_y, comp_x = np.where(component_mask)
if len(comp_x) > 0 and len(comp_y) > 0:
x_min = min(x_min, np.min(comp_x))
y_min = min(y_min, np.min(comp_y))
x_max = max(x_max, np.max(comp_x))
y_max = max(y_max, np.max(comp_y))
# Calculate the current crop
width = x_max - x_min + 1
height = y_max - y_min + 1
crop_area = width * height
crop_mask = np.zeros_like(dilated)
crop_mask[y_min : y_max + 1, x_min : x_max + 1] = 1
white_in_crop = np.sum(np.logical_and(dilated > 0, crop_mask > 0))
# Calculate F1 score
precision = white_in_crop / crop_area
recall = white_in_crop / total_white_pixels
f1 = 2 * precision * recall / (precision + recall)
if f1 > best_f1:
best_f1 = f1
best_crop = (x_min, y_min, x_max, y_max)
# Apply the best crop to the original image
x_min, y_min, x_max, y_max = best_crop
cropped_image = image[y_min : y_max + 1, x_min : x_max + 1]
# Apply Gaussian adaptive thresholding
if is_effectively_binary(cropped_image):
_, thresh = cv2.threshold(cropped_image, 127, 255, cv2.THRESH_BINARY)
else:
thresh = cv2.adaptiveThreshold(
cropped_image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2
)
# Ensure background is black
white = np.sum(thresh == 255)
black = np.sum(thresh == 0)
if white > black:
thresh = 255 - thresh
# Clean up noise using median filter
denoised = cv2.medianBlur(thresh, 3)
for _ in range(3):
denoised = cv2.medianBlur(denoised, 3)
# Add padding
result = cv2.copyMakeBorder(denoised, 5, 5, 5, 5, cv2.BORDER_CONSTANT, value=0)
return result, best_crop
def process_img(filename, convert_to_rgb=False):
"""
Load, binarize, ensure black background, resize, and apply padding
Args:
filename: Path to the image file
convert_to_rgb: Whether to convert to RGB
Returns:
Processed image and crop information
"""
image = cv2.imread(filename, cv2.IMREAD_GRAYSCALE)
if image is None:
raise ValueError(f"Could not read image file: {filename}")
bin_img, best_crop = before_padding(image)
h, w = bin_img.shape
new_w = int((INPUT_HEIGHT / h) * w)
if new_w > INPUT_WIDTH:
resized_img = cv2.resize(
bin_img, (INPUT_WIDTH, INPUT_HEIGHT), interpolation=cv2.INTER_AREA
)
else:
resized_img = cv2.resize(
bin_img, (new_w, INPUT_HEIGHT), interpolation=cv2.INTER_AREA
)
padded_img = (
np.ones((INPUT_HEIGHT, INPUT_WIDTH), dtype=np.uint8) * 0
) # Black background
x_offset = (INPUT_WIDTH - new_w) // 2
padded_img[:, x_offset : x_offset + new_w] = resized_img
resized_img = padded_img
# Convert to BGR/RGB only if necessary
if convert_to_rgb:
resized_img = cv2.cvtColor(resized_img, cv2.COLOR_GRAY2BGR)
return resized_img, best_crop
class HMERDatasetForCAN(Dataset):
"""
Dataset integrated with the CAN model for HMER
"""
def __init__(self, data_folder, label_file, vocab, transform=None, max_length=150):
"""
Initialize the dataset
data_folder: Directory containing images
label_file: TSV file with two columns (filename, label), no header
vocab: Vocabulary object for tokenization
transform: Image transformations
max_length: Maximum length of the token sequence
"""
self.data_folder = data_folder
self.max_length = max_length
self.vocab = vocab
# Read the label file
df = pd.read_csv(label_file, sep="\t", header=None, names=["filename", "label"])
# Check image file format
if os.path.exists(data_folder):
img_files = os.listdir(data_folder)
if img_files:
# Get the extension of the first file
extension = os.path.splitext(img_files[0])[1]
# Add extension to filenames if not present
df["filename"] = df["filename"].apply(
lambda x: x if os.path.splitext(x)[1] else x + extension
)
self.annotations = dict(zip(df["filename"], df["label"]))
self.image_paths = list(self.annotations.keys())
# Default transformation
if transform is None:
transform = A.Compose(
[
A.Normalize(
mean=[0.0], std=[1.0]
), # Normalize for single channel (grayscale)
A.pytorch.ToTensorV2(),
]
)
self.transform = transform
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
# Get image path and LaTeX expression
image_path = self.image_paths[idx]
latex = self.annotations[image_path]
# Process image
file_path = os.path.join(self.data_folder, image_path)
processed_img, _ = process_img(
file_path, convert_to_rgb=False
) # Keep image as grayscale
# Convert to [C, H, W] format and normalize
if self.transform:
# Ensure image has the correct format for albumentations
processed_img = np.expand_dims(processed_img, axis=-1) # [H, W, 1]
image = self.transform(image=processed_img)["image"]
else:
# If no transform, manually convert to tensor
image = torch.from_numpy(processed_img).float() / 255.0
image = image.unsqueeze(0) # Add grayscale channel: [1, H, W]
# Tokenize LaTeX expression
tokens = self.vocab.tokenize(latex)
# Add start and end tokens
tokens = [self.vocab.start_token] + tokens + [self.vocab.end_token]
# Truncate if exceeding max length
if len(tokens) > self.max_length:
tokens = tokens[: self.max_length]
# Create counting vector for CAN
count_vector = self.create_count_vector(tokens)
# Store actual caption length
caption_length = torch.LongTensor([len(tokens)])
# Pad to max length
if len(tokens) < self.max_length:
tokens = tokens + [self.vocab.pad_token] * (self.max_length - len(tokens))
# Convert to tensor
caption = torch.LongTensor(tokens)
return image, caption, caption_length, count_vector
def create_count_vector(self, tokens):
"""
Create counting vector for the CAN model
Args:
tokens: List of token IDs
Returns:
Tensor counting the occurrence of each symbol
"""
# Count occurrences of each token
counter = Counter(tokens)
# Create counting vector with size equal to vocabulary size
count_vector = torch.zeros(len(self.vocab))
# Fill counting vector with counts
for token_id, count in counter.items():
if 0 <= token_id < len(count_vector):
count_vector[token_id] = count
return count_vector
class Vocabulary:
"""
Advanced Vocabulary class for tokenization
"""
def __init__(self):
self.word2idx = {}
self.idx2word = {}
self.idx = 0
# Add special tokens
self.add_word("<pad>") # Padding token
self.add_word("<start>") # Start token
self.add_word("<end>") # End token
self.add_word("<unk>") # Unknown token
self.pad_token = self.word2idx["<pad>"]
self.start_token = self.word2idx["<start>"]
self.end_token = self.word2idx["<end>"]
self.unk_token = self.word2idx["<unk>"]
def add_word(self, word):
if word not in self.word2idx:
self.word2idx[word] = self.idx
self.idx2word[self.idx] = word
self.idx += 1
def __len__(self):
return len(self.word2idx)
def tokenize(self, latex):
"""
Tokenize LaTeX string into indices. Assumes tokens are space-separated.
"""
tokens = []
for char in latex.split():
if char in self.word2idx:
tokens.append(self.word2idx[char])
else:
tokens.append(self.unk_token)
return tokens
def build_vocab(self, label_file):
"""
Build vocabulary from label file
"""
try:
df = pd.read_csv(
label_file, sep="\t", header=None, names=["filename", "label"]
)
all_labels_text = " ".join(df["label"].astype(str).tolist())
tokens = sorted(set(all_labels_text.split()))
for char in tokens:
self.add_word(char)
except Exception as e:
print(f"Error building vocabulary from {label_file}: {e}")
def save_vocab(self, path):
"""
Save vocabulary to file
"""
data = {"word2idx": self.word2idx, "idx2word": self.idx2word, "idx": self.idx}
torch.save(data, path)
def load_vocab(self, path):
"""
Load vocabulary from file
"""
data = torch.load(path)
self.word2idx = data["word2idx"]
self.idx2word = data["idx2word"]
self.idx = data["idx"]
# Update special tokens
self.pad_token = self.word2idx["<pad>"]
self.start_token = self.word2idx["<start>"]
self.end_token = self.word2idx["<end>"]
self.unk_token = self.word2idx["<unk>"]
def build_unified_vocabulary(base_dir="data/CROHME"):
"""
Build a unified vocabulary from all caption.txt files
Args:
base_dir: Root directory containing CROHME data
Returns:
Constructed Vocabulary object
"""
vocab = Vocabulary()
# Get all subdirectories
subdirs = [
d for d in os.listdir(base_dir) if os.path.isdir(os.path.join(base_dir, d))
]
for subdir in subdirs:
caption_path = os.path.join(base_dir, subdir, "caption.txt")
if os.path.exists(caption_path):
vocab.build_vocab(caption_path)
print(f"Built vocabulary from {caption_path}")
print(f"Final vocabulary size: {len(vocab)}")
return vocab
def create_dataloaders_for_can(base_dir="data/CROHME", batch_size=32, num_workers=4):
"""
Create dataloaders for training the CAN model
Args:
base_dir: Root directory containing CROHME data
batch_size: Batch size
num_workers: Number of workers for DataLoader
Returns:
train_loader, val_loader, test_loader, vocab
"""
# Build unified vocabulary
vocab = build_unified_vocabulary(base_dir)
# Save vocabulary for later use
os.makedirs("models", exist_ok=True)
vocab.save_vocab("models/hmer_vocab.pth")
# Create transform for grayscale data
transform = A.Compose(
[
A.Normalize(
mean=[0.0], std=[1.0]
), # Normalize for single channel (grayscale)
A.pytorch.ToTensorV2(),
]
)
# Create datasets
train_datasets = []
# Use 'train' and possibly add other datasets to training set
train_dirs = ["train", "2014"] # Add other directories if desired
for train_dir in train_dirs:
data_folder = os.path.join(base_dir, train_dir, "img")
label_file = os.path.join(base_dir, train_dir, "caption.txt")
if os.path.exists(data_folder) and os.path.exists(label_file):
train_datasets.append(
HMERDatasetForCAN(
data_folder=data_folder,
label_file=label_file,
vocab=vocab,
transform=transform,
)
)
# Combine training datasets
if train_datasets:
train_dataset = ConcatDataset(train_datasets)
else:
raise ValueError("No training datasets found")
# Validation dataset
val_data_folder = os.path.join(base_dir, "val", "img")
val_label_file = os.path.join(base_dir, "val", "caption.txt")
if not os.path.exists(val_data_folder) or not os.path.exists(val_label_file):
# Use '2016' as validation set if 'val' is not available
val_data_folder = os.path.join(base_dir, "2016", "img")
val_label_file = os.path.join(base_dir, "2016", "caption.txt")
val_dataset = HMERDatasetForCAN(
data_folder=val_data_folder,
label_file=val_label_file,
vocab=vocab,
transform=transform,
)
# Test dataset
test_data_folder = os.path.join(base_dir, "test", "img")
test_label_file = os.path.join(base_dir, "test", "caption.txt")
if not os.path.exists(test_data_folder) or not os.path.exists(test_label_file):
# Use '2019' as test set if 'test' is not available
test_data_folder = os.path.join(base_dir, "2019", "img")
test_label_file = os.path.join(base_dir, "2019", "caption.txt")
test_dataset = HMERDatasetForCAN(
data_folder=test_data_folder,
label_file=test_label_file,
vocab=vocab,
transform=transform,
)
# Create dataloaders
train_loader = DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
pin_memory=True,
)
val_loader = DataLoader(
val_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=True,
)
test_loader = DataLoader(
test_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=True,
)
return train_loader, val_loader, test_loader, vocab
# Use functionality integrated with the CAN model
def main():
# Create dataloader for the CAN model
train_loader, val_loader, test_loader, vocab = create_dataloaders_for_can(
base_dir=BASE_DIR, batch_size=BATCH_SIZE, num_workers=NUM_WORKERS
)
# Print information
print(f"Training samples: {len(train_loader.dataset)}")
print(f"Validation samples: {len(val_loader.dataset)}")
print(f"Test samples: {len(test_loader.dataset)}")
# Check dataloader output
for images, captions, lengths, count_vectors in train_loader:
print(f"Image batch shape: {images.shape}")
print(f"Caption batch shape: {captions.shape}")
print(f"Lengths batch shape: {lengths.shape}")
print(f"Count vectors batch shape: {count_vectors.shape}")
break
if __name__ == "__main__":
main()
|