File size: 14,600 Bytes
324b9ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
import os
import sys
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
import torch
import pandas as pd
from PIL import Image
import cv2
import albumentations as A
from albumentations.pytorch import ToTensorV2
import matplotlib.pyplot as plt
import numpy as np
from tqdm.auto import tqdm
import json
import torch.nn.functional as F
from models.can.can import CAN, create_can_model
from models.can.can_dataloader import Vocabulary, process_img, INPUT_HEIGHT, INPUT_WIDTH
torch.serialization.add_safe_globals([Vocabulary])
os.environ['QT_QPA_PLATFORM'] = 'offscreen'
with open("config.json", "r") as json_file:
cfg = json.load(json_file)
CAN_CONFIG = cfg["can"]
# Global constants here
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
MODE = CAN_CONFIG["mode"] # 'single' or 'evaluate'
BACKBONE_TYPE = CAN_CONFIG["backbone_type"]
PRETRAINED_BACKBONE = True if CAN_CONFIG["pretrained_backbone"] == 1 else False
CHECKPOINT_PATH = f'checkpoints/{BACKBONE_TYPE}_can_best.pth' if PRETRAINED_BACKBONE == False else f'checkpoints/p_{BACKBONE_TYPE}_can_best.pth'
IMAGE_PATH = f'{CAN_CONFIG["test_folder"]}/{CAN_CONFIG["relative_image_path"]}'
VISUALIZE = True if CAN_CONFIG["visualize"] == 1 else False
TEST_FOLDER = CAN_CONFIG["test_folder"]
LABEL_FILE = CAN_CONFIG["label_file"]
CLASSIFIER = CAN_CONFIG["classifier"] # choose between 'frac', 'sum_or_lim', 'long_expr', and 'all'
def filter_formula(formula_tokens, mode):
if mode == "frac":
return "\\frac" in formula_tokens
elif mode == "sum_or_lim":
return "\\sum" in formula_tokens or "\\limit" in formula_tokens
elif mode == "long_expr":
return len(formula_tokens) >= 30
elif mode == 'short_expr':
return len(formula_tokens) <= 10
return True
def levenshtein_distance(lst1, lst2):
"""
Calculate Levenshtein distance between two lists
"""
m = len(lst1)
n = len(lst2)
prev_row = [j for j in range(n + 1)]
curr_row = [0] * (n + 1)
for i in range(1, m + 1):
curr_row[0] = i
for j in range(1, n + 1):
if lst1[i - 1] == lst2[j - 1]:
curr_row[j] = prev_row[j - 1]
else:
curr_row[j] = 1 + min(
curr_row[j - 1], # insertion
prev_row[j], # deletion
prev_row[j - 1] # substitution
)
prev_row = curr_row.copy()
return curr_row[n]
def load_checkpoint(checkpoint_path, device, pretrained_backbone=True, backbone='densenet'):
"""
Load checkpoint and return model and vocabulary
"""
checkpoint = torch.load(checkpoint_path,
map_location=device,
weights_only=False)
vocab = checkpoint.get('vocab')
if vocab is None:
# Try to load vocab from a separate file if not in checkpoint
vocab_path = os.path.join(os.path.dirname(checkpoint_path),
'hmer_vocab.pth')
if os.path.exists(vocab_path):
vocab_data = torch.load(vocab_path)
vocab = Vocabulary()
vocab.word2idx = vocab_data['word2idx']
vocab.idx2word = vocab_data['idx2word']
vocab.idx = vocab_data['idx']
# Update special tokens
vocab.pad_token = vocab.word2idx['<pad>']
vocab.start_token = vocab.word2idx['<start>']
vocab.end_token = vocab.word2idx['<end>']
vocab.unk_token = vocab.word2idx['<unk>']
else:
raise ValueError(
f"Vocabulary not found in checkpoint and {vocab_path} does not exist"
)
# Initialize model with parameters from checkpoint
hidden_size = checkpoint.get('hidden_size', 256)
embedding_dim = checkpoint.get('embedding_dim', 256)
use_coverage = checkpoint.get('use_coverage', True)
model = create_can_model(num_classes=len(vocab),
hidden_size=hidden_size,
embedding_dim=embedding_dim,
use_coverage=use_coverage,
pretrained_backbone=pretrained_backbone,
backbone_type=backbone).to(device)
model.load_state_dict(checkpoint['model'])
print(f"Loaded model from checkpoint {checkpoint_path}")
return model, vocab
def recognize_single_image(model,
image_path,
vocab,
device,
max_length=150,
visualize_attention=False):
"""
Recognize handwritten mathematical expression from a single image using the CAN model
"""
# Prepare image transform for grayscale images
transform = A.Compose([
A.Normalize(mean=[0.0], std=[1.0]), # For grayscale
A.pytorch.ToTensorV2()
])
# Load and transform image
processed_img, best_crop = process_img(image_path, convert_to_rgb=False)
# Ensure image has the correct format for albumentations
processed_img = np.expand_dims(processed_img, axis=-1) # [H, W, 1]
image_tensor = transform(
image=processed_img)['image'].unsqueeze(0).to(device)
model.eval()
with torch.no_grad():
# Generate LaTeX using beam search
predictions, attention_weights = model.recognize(
image_tensor,
max_length=max_length,
start_token=vocab.start_token,
end_token=vocab.end_token,
beam_width=5 # Use beam search with width 5
)
# Convert indices to LaTeX tokens
latex_tokens = []
for idx in predictions:
if idx == vocab.end_token:
break
if idx != vocab.start_token: # Skip start token
latex_tokens.append(vocab.idx2word[idx])
# Join tokens to get complete LaTeX
latex = ' '.join(latex_tokens)
# Visualize attention if requested
if visualize_attention and attention_weights is not None:
visualize_attention_maps(processed_img, attention_weights,
latex_tokens, best_crop)
return latex
def visualize_attention_maps(orig_image,
attention_weights,
latex_tokens,
best_crop,
max_cols=4):
"""
Visualize attention maps over the image for CAN model
"""
# Create PIL image from numpy array
orig_image = orig_image.crop(best_crop)
orig_w, orig_h = orig_image.size
ratio = INPUT_HEIGHT / INPUT_WIDTH
num_tokens = len(latex_tokens)
num_cols = min(max_cols, num_tokens)
num_rows = int(np.ceil(num_tokens / num_cols))
fig, axes = plt.subplots(num_rows,
num_cols,
figsize=(num_cols * 3, int(num_rows * 6 * orig_h / orig_w)))
axes = np.array(axes).reshape(-1)
for i, (token, attn) in enumerate(zip(latex_tokens, attention_weights)):
ax = axes[i]
attn = attn[0:1].squeeze(0)
attn_len = attn.shape[0]
attn_w = int(np.sqrt(attn_len / ratio))
attn_h = int(np.sqrt(attn_len * ratio))
# resize to (orig_h, interpolated_w)
attn = attn.view(1, 1, attn_h, attn_w)
interp_w = int(orig_h / ratio)
attn = F.interpolate(attn, size=(orig_h, interp_w), mode='bilinear', align_corners=False)
attn = attn.squeeze().cpu().numpy()
# fix aspect ratio mismatch
if interp_w > orig_w:
# center crop width
start = (interp_w - orig_w) // 2
attn = attn[:, start:start + orig_w]
elif interp_w < orig_w:
# stretch to fit width
attn = cv2.resize(attn, (orig_w, orig_h), interpolation=cv2.INTER_CUBIC)
ax.imshow(orig_image)
ax.imshow(attn, cmap='jet', alpha=0.4)
ax.set_title(f'{token}', fontsize=10 * 8 * orig_h / orig_w)
ax.axis('off')
for j in range(i + 1, len(axes)):
axes[j].axis('off')
plt.tight_layout()
plt.savefig('attention_maps_can.png', bbox_inches='tight', dpi=150)
plt.close()
def evaluate_model(model,
test_folder,
label_file,
vocab,
device,
max_length=150,
batch_size=32):
"""
Evaluate CAN model on test set
"""
df = pd.read_csv(label_file,
sep='\t',
header=None,
names=['filename', 'label'])
# Check image file format
if os.path.exists(test_folder):
img_files = os.listdir(test_folder)
if img_files:
# Get the extension of the first file
extension = os.path.splitext(img_files[0])[1]
# Add extension to filenames if not present
df['filename'] = df['filename'].apply(
lambda x: x if os.path.splitext(x)[1] else x + extension)
annotations = dict(zip(df['filename'], df['label']))
model.eval()
correct = 0
err1 = 0
err2 = 0
err3 = 0
total = 0
transform = A.Compose([
A.Normalize(mean=[0.0], std=[1.0]), # For grayscale
A.pytorch.ToTensorV2()
])
results = {}
for image_path, gt_latex in tqdm(annotations.items(), desc="Evaluating"):
gt_latex: str = gt_latex
if not filter_formula(gt_latex.split(), CLASSIFIER):
continue
file_path = os.path.join(test_folder, image_path)
try:
processed_img, _ = process_img(file_path, convert_to_rgb=False)
# Ensure image has the correct format for albumentations
processed_img = np.expand_dims(processed_img, axis=-1) # [H, W, 1]
image_tensor = transform(
image=processed_img)['image'].unsqueeze(0).to(device)
with torch.no_grad():
predictions, _ = model.recognize(
image_tensor,
max_length=max_length,
start_token=vocab.start_token,
end_token=vocab.end_token,
beam_width=5 # Use beam search
)
# Convert indices to LaTeX tokens
pred_latex_tokens = []
for idx in predictions:
if idx == vocab.end_token:
break
if idx != vocab.start_token: # Skip start token
pred_latex_tokens.append(vocab.idx2word[idx])
pred_latex = ' '.join(pred_latex_tokens)
gt_latex_tokens = gt_latex.split()
edit_distance = levenshtein_distance(pred_latex_tokens,
gt_latex_tokens)
if edit_distance == 0:
correct += 1
elif edit_distance == 1:
err1 += 1
elif edit_distance == 2:
err2 += 1
elif edit_distance == 3:
err3 += 1
total += 1
# Save result
results[image_path] = {
'ground_truth': gt_latex,
'prediction': pred_latex,
'edit_distance': edit_distance
}
except Exception as e:
print(f"Error processing {image_path}: {e}")
# Calculate accuracy metrics
exprate = round(correct / total, 4) if total > 0 else 0
exprate_leq1 = round((correct + err1) / total, 4) if total > 0 else 0
exprate_leq2 = round(
(correct + err1 + err2) / total, 4) if total > 0 else 0
exprate_leq3 = round(
(correct + err1 + err2 + err3) / total, 4) if total > 0 else 0
print(f"Exact match rate: {exprate:.4f}")
print(f"Edit distance ≤ 1: {exprate_leq1:.4f}")
print(f"Edit distance ≤ 2: {exprate_leq2:.4f}")
print(f"Edit distance ≤ 3: {exprate_leq3:.4f}")
# Save results to file
with open('evaluation_results_can.json', 'w', encoding='utf-8') as f:
json.dump(
{
'accuracy': {
'exprate': exprate,
'exprate_leq1': exprate_leq1,
'exprate_leq2': exprate_leq2,
'exprate_leq3': exprate_leq3
},
'results': results
},
f,
indent=4)
return {
'exprate': exprate,
'exprate_leq1': exprate_leq1,
'exprate_leq2': exprate_leq2,
'exprate_leq3': exprate_leq3
}, results
def main(mode):
device = DEVICE
print(f'Using device: {device}')
checkpoint_path = CHECKPOINT_PATH
backbone = BACKBONE_TYPE
pretrained_backbone = PRETRAINED_BACKBONE
# For single mode
image_path = IMAGE_PATH
visualize = VISUALIZE
# For evaluation mode
test_folder = TEST_FOLDER
label_file = LABEL_FILE
# Load model and vocabulary
model, vocab = load_checkpoint(checkpoint_path, device, pretrained_backbone=pretrained_backbone, backbone=backbone)
if mode == 'single':
if image_path is None:
raise ValueError('Image path is required for single mode')
latex = recognize_single_image(model,
image_path,
vocab,
device,
visualize_attention=visualize)
print(f'Recognized LaTeX: {latex}')
elif mode == 'evaluate':
if test_folder is None or label_file is None:
raise ValueError(
'Test folder and annotation file are required for evaluate mode'
)
metrics, results = evaluate_model(model, test_folder, label_file,
vocab, device)
print(f"##### Score of {CLASSIFIER} expression type: #####")
print(f'Evaluation metrics: {metrics}')
if __name__ == '__main__':
# Ensure Vocabulary is safe for serialization
torch.serialization.add_safe_globals([Vocabulary])
# Run the main function
main(MODE) |