File size: 10,828 Bytes
324b9ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import os
import sys
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from torch.utils.data import DataLoader
import time
import wandb
from datetime import datetime
from tqdm.auto import tqdm
from models.can.can import CAN, create_can_model
from models.can.can_dataloader import create_dataloaders_for_can, Vocabulary
import albumentations as A
import cv2
import random
import json
with open("config.json", "r") as json_file:
cfg = json.load(json_file)
CAN_CONFIG = cfg["can"]
# Global constants
BASE_DIR = CAN_CONFIG["base_dir"]
SEED = CAN_CONFIG["seed"]
CHECKPOINT_DIR = CAN_CONFIG["checkpoint_dir"]
PRETRAINED_BACKBONE = True if CAN_CONFIG["pretrained_backbone"] == 1 else False
BACKBONE_TYPE = CAN_CONFIG["backbone_type"]
CHECKPOINT_NAME = f'{BACKBONE_TYPE}_can_best.pth' if PRETRAINED_BACKBONE == False else f'p_{BACKBONE_TYPE}_can_best.pth'
BATCH_SIZE = CAN_CONFIG["batch_size"]
HIDDEN_SIZE = CAN_CONFIG["hidden_size"]
EMBEDDING_DIM = CAN_CONFIG["embedding_dim"]
USE_COVERAGE = True if CAN_CONFIG["use_coverage"] == 1 else False
LAMBDA_COUNT = CAN_CONFIG["lambda_count"]
LR = CAN_CONFIG["lr"]
EPOCHS = CAN_CONFIG["epochs"]
GRAD_CLIP = CAN_CONFIG["grad_clip"]
PRINT_FREQ = CAN_CONFIG["print_freq"]
T = CAN_CONFIG["t"]
T_MULT = CAN_CONFIG["t_mult"]
PROJECT_NAME = f'final-hmer-can-{BACKBONE_TYPE}-pretrained' if PRETRAINED_BACKBONE == True else f'final-hmer-can-{BACKBONE_TYPE}'
NUM_WORKERS = cfg["can"]["num_workers"]
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class RandomMorphology(A.ImageOnlyTransform):
def __init__(self, p=0.5, kernel_size=3):
super(RandomMorphology, self).__init__(p)
self.kernel_size = kernel_size
def apply(self, img, **params):
op = random.choice(['erode', 'dilate'])
kernel = np.ones((self.kernel_size, self.kernel_size), np.uint8)
if op == 'erode':
return cv2.erode(img, kernel, iterations=1)
else:
return cv2.dilate(img, kernel, iterations=1)
# Custom transforms for CAN model (grayscale images)
train_transforms = A.Compose([
A.Rotate(limit=5, p=0.25, border_mode=cv2.BORDER_REPLICATE),
A.ElasticTransform(alpha=100,
sigma=7,
p=0.5,
interpolation=cv2.INTER_CUBIC),
RandomMorphology(p=0.5, kernel_size=2),
A.Normalize(mean=[0.0], std=[1.0]), # For grayscale
A.pytorch.ToTensorV2()
])
def train_epoch(model,
train_loader,
optimizer,
device,
grad_clip=5.0,
lambda_count=0.01,
print_freq=10):
"""
Train the model for one epoch
"""
model.train()
total_loss = 0.0
total_cls_loss = 0.0
total_count_loss = 0.0
batch_count = 0
for i, (images, captions, caption_lengths,
count_targets) in tqdm(enumerate(train_loader),
total=len(train_loader)):
batch_count += 1
images = images.to(device)
captions = captions.to(device)
count_targets = count_targets.to(device)
# Forward pass
outputs, count_vectors = model(images,
captions,
teacher_forcing_ratio=0.5)
# Calculate loss
loss, cls_loss, counting_loss = model.calculate_loss(
outputs=outputs,
targets=captions,
count_vectors=count_vectors,
count_targets=count_targets,
lambda_count=lambda_count)
# Backward pass
optimizer.zero_grad()
loss.backward()
# Clip gradients
if grad_clip:
nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
# Update weights
optimizer.step()
# Track losses
total_loss += loss.item()
total_cls_loss += cls_loss.item()
total_count_loss += counting_loss.item()
# Print progress
if i % print_freq == 0 and i > 0:
print(
f'Batch {i}/{len(train_loader)}, Loss: {loss.item():.4f}, '
f'Cls Loss: {cls_loss.item():.4f}, Count Loss: {counting_loss.item():.4f}'
)
return total_loss / batch_count, total_cls_loss / batch_count, total_count_loss / batch_count
def validate(model, val_loader, device, lambda_count=0.01):
"""
Validate the model
"""
model.eval()
total_loss = 0.0
total_cls_loss = 0.0
total_count_loss = 0.0
batch_count = 0
with torch.no_grad():
for i, (images, captions, caption_lengths,
count_targets) in tqdm(enumerate(val_loader),
total=len(val_loader)):
batch_count += 1
images = images.to(device)
captions = captions.to(device)
count_targets = count_targets.to(device)
# Forward pass
outputs, count_vectors = model(
images, captions,
teacher_forcing_ratio=0.0) # No teacher forcing in validation
# Calculate loss
loss, cls_loss, counting_loss = model.calculate_loss(
outputs=outputs,
targets=captions,
count_vectors=count_vectors,
count_targets=count_targets,
lambda_count=lambda_count)
# Track losses
total_loss += loss.item()
total_cls_loss += cls_loss.item()
total_count_loss += counting_loss.item()
return total_loss / batch_count, total_cls_loss / batch_count, total_count_loss / batch_count
def main():
# Configuration
dataset_dir = BASE_DIR
seed = SEED
checkpoints_dir = CHECKPOINT_DIR
checkpoint_name = CHECKPOINT_NAME
batch_size = BATCH_SIZE
# Model parameters
hidden_size = HIDDEN_SIZE
embedding_dim = EMBEDDING_DIM
use_coverage = USE_COVERAGE
lambda_count = LAMBDA_COUNT
# Training parameters
lr = LR
epochs = EPOCHS
grad_clip = GRAD_CLIP
print_freq = PRINT_FREQ
# Scheduler parameters
T_0 = T
T_mult = T_MULT
# Set random seeds
torch.manual_seed(seed)
np.random.seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
# Create checkpoint directory
os.makedirs(checkpoints_dir, exist_ok=True)
# Set device
device = DEVICE
print(f'Using device: {device}')
# Create dataloaders
train_loader, val_loader, test_loader, vocab = create_dataloaders_for_can(
base_dir=dataset_dir, batch_size=batch_size, num_workers=NUM_WORKERS)
print(f"Training samples: {len(train_loader.dataset)}")
print(f"Validation samples: {len(val_loader.dataset)}")
print(f"Test samples: {len(test_loader.dataset)}")
print(f"Vocabulary size: {len(vocab)}")
# Create model
model = create_can_model(num_classes=len(vocab),
hidden_size=hidden_size,
embedding_dim=embedding_dim,
use_coverage=use_coverage,
pretrained_backbone=PRETRAINED_BACKBONE,
backbone_type=BACKBONE_TYPE).to(device)
# Create optimizer
optimizer = optim.Adam(model.parameters(), lr=lr)
# Create learning rate scheduler
scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer,
T_0=T_0,
T_mult=T_mult)
# Initialize wandb
run_name = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
wandb.init(project=PROJECT_NAME,
name=run_name,
config={
'seed': seed,
'batch_size': batch_size,
'hidden_size': hidden_size,
'embedding_dim': embedding_dim,
'use_coverage': use_coverage,
'lambda_count': lambda_count,
'lr': lr,
'epochs': epochs,
'grad_clip': grad_clip,
'T_0': T_0,
'T_mult': T_mult
})
# Training loop
best_val_loss = float('inf')
for epoch in tqdm(range(epochs)):
curr_lr = scheduler.get_last_lr()[0]
print(f'Epoch {epoch+1:03}/{epochs:03}')
t1 = time.time()
# Train
train_loss, train_cls_loss, train_count_loss = train_epoch(
model=model,
train_loader=train_loader,
optimizer=optimizer,
device=device,
grad_clip=grad_clip,
lambda_count=lambda_count,
print_freq=print_freq)
# Validate
val_loss, val_cls_loss, val_count_loss = validate(
model=model,
val_loader=val_loader,
device=device,
lambda_count=lambda_count)
# Update learning rate
scheduler.step()
t2 = time.time()
# Print stats
print(
f'Train - Total Loss: {train_loss:.4f}, Class Loss: {train_cls_loss:.4f}, Count Loss: {train_count_loss:.4f}'
)
print(
f'Val - Total Loss: {val_loss:.4f}, Class Loss: {val_cls_loss:.4f}, Count Loss: {val_count_loss:.4f}'
)
print(f'Time: {t2 - t1:.2f}s, Learning Rate: {curr_lr:.6f}')
# Log metrics to wandb
wandb.log({
'train_loss': train_loss,
'train_cls_loss': train_cls_loss,
'train_count_loss': train_count_loss,
'val_loss': val_loss,
'val_cls_loss': val_cls_loss,
'val_count_loss': val_count_loss,
'learning_rate': curr_lr,
'epoch': epoch
})
# Save checkpoint
if val_loss < best_val_loss:
best_val_loss = val_loss
checkpoint = {
'epoch': epoch,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'val_loss': val_loss,
'vocab': vocab
}
torch.save(checkpoint, os.path.join(checkpoints_dir,
checkpoint_name))
print('Model saved!')
print('Training completed!')
if __name__ == "__main__":
main()
|