File size: 10,828 Bytes
324b9ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import os
import sys

sys.path.append(os.path.dirname(os.path.abspath(__file__)))

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from torch.utils.data import DataLoader
import time
import wandb
from datetime import datetime
from tqdm.auto import tqdm

from models.can.can import CAN, create_can_model
from models.can.can_dataloader import create_dataloaders_for_can, Vocabulary

import albumentations as A
import cv2
import random

import json 

with open("config.json", "r") as json_file:
    cfg = json.load(json_file)

CAN_CONFIG = cfg["can"]


# Global constants
BASE_DIR = CAN_CONFIG["base_dir"]
SEED = CAN_CONFIG["seed"]
CHECKPOINT_DIR = CAN_CONFIG["checkpoint_dir"]
PRETRAINED_BACKBONE = True if CAN_CONFIG["pretrained_backbone"] == 1 else False
BACKBONE_TYPE = CAN_CONFIG["backbone_type"]
CHECKPOINT_NAME = f'{BACKBONE_TYPE}_can_best.pth' if PRETRAINED_BACKBONE == False else f'p_{BACKBONE_TYPE}_can_best.pth'
BATCH_SIZE = CAN_CONFIG["batch_size"]

HIDDEN_SIZE = CAN_CONFIG["hidden_size"]
EMBEDDING_DIM = CAN_CONFIG["embedding_dim"]
USE_COVERAGE = True if CAN_CONFIG["use_coverage"] == 1 else False
LAMBDA_COUNT = CAN_CONFIG["lambda_count"]

LR = CAN_CONFIG["lr"]
EPOCHS = CAN_CONFIG["epochs"]
GRAD_CLIP = CAN_CONFIG["grad_clip"]
PRINT_FREQ = CAN_CONFIG["print_freq"]

T = CAN_CONFIG["t"]
T_MULT = CAN_CONFIG["t_mult"]

PROJECT_NAME = f'final-hmer-can-{BACKBONE_TYPE}-pretrained' if PRETRAINED_BACKBONE == True else f'final-hmer-can-{BACKBONE_TYPE}'
NUM_WORKERS = cfg["can"]["num_workers"]
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

class RandomMorphology(A.ImageOnlyTransform):

    def __init__(self, p=0.5, kernel_size=3):
        super(RandomMorphology, self).__init__(p)
        self.kernel_size = kernel_size

    def apply(self, img, **params):
        op = random.choice(['erode', 'dilate'])
        kernel = np.ones((self.kernel_size, self.kernel_size), np.uint8)
        if op == 'erode':
            return cv2.erode(img, kernel, iterations=1)
        else:
            return cv2.dilate(img, kernel, iterations=1)


# Custom transforms for CAN model (grayscale images)
train_transforms = A.Compose([
    A.Rotate(limit=5, p=0.25, border_mode=cv2.BORDER_REPLICATE),
    A.ElasticTransform(alpha=100,
                       sigma=7,
                       p=0.5,
                       interpolation=cv2.INTER_CUBIC),
    RandomMorphology(p=0.5, kernel_size=2),
    A.Normalize(mean=[0.0], std=[1.0]),  # For grayscale      
    A.pytorch.ToTensorV2()
])


def train_epoch(model,

                train_loader,

                optimizer,

                device,

                grad_clip=5.0,

                lambda_count=0.01,

                print_freq=10):
    """

    Train the model for one epoch

    """
    model.train()
    total_loss = 0.0
    total_cls_loss = 0.0
    total_count_loss = 0.0
    batch_count = 0

    for i, (images, captions, caption_lengths,
            count_targets) in tqdm(enumerate(train_loader),
                                   total=len(train_loader)):
        batch_count += 1
        images = images.to(device)
        captions = captions.to(device)
        count_targets = count_targets.to(device)

        # Forward pass
        outputs, count_vectors = model(images,
                                       captions,
                                       teacher_forcing_ratio=0.5)

        # Calculate loss
        loss, cls_loss, counting_loss = model.calculate_loss(
            outputs=outputs,
            targets=captions,
            count_vectors=count_vectors,
            count_targets=count_targets,
            lambda_count=lambda_count)

        # Backward pass
        optimizer.zero_grad()
        loss.backward()

        # Clip gradients
        if grad_clip:
            nn.utils.clip_grad_norm_(model.parameters(), grad_clip)

        # Update weights
        optimizer.step()

        # Track losses
        total_loss += loss.item()
        total_cls_loss += cls_loss.item()
        total_count_loss += counting_loss.item()

        # Print progress
        if i % print_freq == 0 and i > 0:
            print(
                f'Batch {i}/{len(train_loader)}, Loss: {loss.item():.4f}, '
                f'Cls Loss: {cls_loss.item():.4f}, Count Loss: {counting_loss.item():.4f}'
            )

    return total_loss / batch_count, total_cls_loss / batch_count, total_count_loss / batch_count


def validate(model, val_loader, device, lambda_count=0.01):
    """

    Validate the model

    """
    model.eval()
    total_loss = 0.0
    total_cls_loss = 0.0
    total_count_loss = 0.0
    batch_count = 0

    with torch.no_grad():
        for i, (images, captions, caption_lengths,
                count_targets) in tqdm(enumerate(val_loader),
                                       total=len(val_loader)):
            batch_count += 1
            images = images.to(device)
            captions = captions.to(device)
            count_targets = count_targets.to(device)

            # Forward pass
            outputs, count_vectors = model(
                images, captions,
                teacher_forcing_ratio=0.0)  # No teacher forcing in validation

            # Calculate loss
            loss, cls_loss, counting_loss = model.calculate_loss(
                outputs=outputs,
                targets=captions,
                count_vectors=count_vectors,
                count_targets=count_targets,
                lambda_count=lambda_count)

            # Track losses
            total_loss += loss.item()
            total_cls_loss += cls_loss.item()
            total_count_loss += counting_loss.item()

    return total_loss / batch_count, total_cls_loss / batch_count, total_count_loss / batch_count


def main():
    # Configuration
    dataset_dir = BASE_DIR
    seed = SEED
    checkpoints_dir = CHECKPOINT_DIR
    checkpoint_name = CHECKPOINT_NAME
    batch_size = BATCH_SIZE

    # Model parameters
    hidden_size = HIDDEN_SIZE
    embedding_dim = EMBEDDING_DIM
    use_coverage = USE_COVERAGE
    lambda_count = LAMBDA_COUNT

    # Training parameters
    lr = LR
    epochs = EPOCHS
    grad_clip = GRAD_CLIP
    print_freq = PRINT_FREQ

    # Scheduler parameters
    T_0 = T
    T_mult = T_MULT

    # Set random seeds
    torch.manual_seed(seed)
    np.random.seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)

    # Create checkpoint directory
    os.makedirs(checkpoints_dir, exist_ok=True)

    # Set device
    device = DEVICE
    print(f'Using device: {device}')

    # Create dataloaders
    train_loader, val_loader, test_loader, vocab = create_dataloaders_for_can(
        base_dir=dataset_dir, batch_size=batch_size, num_workers=NUM_WORKERS)

    print(f"Training samples: {len(train_loader.dataset)}")
    print(f"Validation samples: {len(val_loader.dataset)}")
    print(f"Test samples: {len(test_loader.dataset)}")
    print(f"Vocabulary size: {len(vocab)}")

    # Create model
    model = create_can_model(num_classes=len(vocab),
                             hidden_size=hidden_size,
                             embedding_dim=embedding_dim,
                             use_coverage=use_coverage,
                             pretrained_backbone=PRETRAINED_BACKBONE,
                             backbone_type=BACKBONE_TYPE).to(device)

    # Create optimizer
    optimizer = optim.Adam(model.parameters(), lr=lr)

    # Create learning rate scheduler
    scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer,
                                                               T_0=T_0,
                                                               T_mult=T_mult)

    # Initialize wandb
    run_name = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
    wandb.init(project=PROJECT_NAME,
               name=run_name,
               config={
                   'seed': seed,
                   'batch_size': batch_size,
                   'hidden_size': hidden_size,
                   'embedding_dim': embedding_dim,
                   'use_coverage': use_coverage,
                   'lambda_count': lambda_count,
                   'lr': lr,
                   'epochs': epochs,
                   'grad_clip': grad_clip,
                   'T_0': T_0,
                   'T_mult': T_mult
               })

    # Training loop
    best_val_loss = float('inf')

    for epoch in tqdm(range(epochs)):
        curr_lr = scheduler.get_last_lr()[0]
        print(f'Epoch {epoch+1:03}/{epochs:03}')
        t1 = time.time()

        # Train
        train_loss, train_cls_loss, train_count_loss = train_epoch(
            model=model,
            train_loader=train_loader,
            optimizer=optimizer,
            device=device,
            grad_clip=grad_clip,
            lambda_count=lambda_count,
            print_freq=print_freq)

        # Validate
        val_loss, val_cls_loss, val_count_loss = validate(
            model=model,
            val_loader=val_loader,
            device=device,
            lambda_count=lambda_count)

        # Update learning rate
        scheduler.step()
        t2 = time.time()

        # Print stats
        print(
            f'Train - Total Loss: {train_loss:.4f}, Class Loss: {train_cls_loss:.4f}, Count Loss: {train_count_loss:.4f}'
        )
        print(
            f'Val - Total Loss: {val_loss:.4f}, Class Loss: {val_cls_loss:.4f}, Count Loss: {val_count_loss:.4f}'
        )
        print(f'Time: {t2 - t1:.2f}s, Learning Rate: {curr_lr:.6f}')

        # Log metrics to wandb
        wandb.log({
            'train_loss': train_loss,
            'train_cls_loss': train_cls_loss,
            'train_count_loss': train_count_loss,
            'val_loss': val_loss,
            'val_cls_loss': val_cls_loss,
            'val_count_loss': val_count_loss,
            'learning_rate': curr_lr,
            'epoch': epoch
        })

        # Save checkpoint
        if val_loss < best_val_loss:
            best_val_loss = val_loss
            checkpoint = {
                'epoch': epoch,
                'model': model.state_dict(),
                'optimizer': optimizer.state_dict(),
                'val_loss': val_loss,
                'vocab': vocab
            }
            torch.save(checkpoint, os.path.join(checkpoints_dir,
                                                checkpoint_name))
            print('Model saved!')

    print('Training completed!')


if __name__ == "__main__":
    main()