Spaces:
Build error
Build error
| import torch | |
| import torch.nn as nn | |
| from typing import Tuple, Union, Optional | |
| from comfy.ldm.modules.attention import optimized_attention | |
| def reshape_for_broadcast(freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]], x: torch.Tensor, head_first=False): | |
| """ | |
| Reshape frequency tensor for broadcasting it with another tensor. | |
| This function reshapes the frequency tensor to have the same shape as the target tensor 'x' | |
| for the purpose of broadcasting the frequency tensor during element-wise operations. | |
| Args: | |
| freqs_cis (Union[torch.Tensor, Tuple[torch.Tensor]]): Frequency tensor to be reshaped. | |
| x (torch.Tensor): Target tensor for broadcasting compatibility. | |
| head_first (bool): head dimension first (except batch dim) or not. | |
| Returns: | |
| torch.Tensor: Reshaped frequency tensor. | |
| Raises: | |
| AssertionError: If the frequency tensor doesn't match the expected shape. | |
| AssertionError: If the target tensor 'x' doesn't have the expected number of dimensions. | |
| """ | |
| ndim = x.ndim | |
| assert 0 <= 1 < ndim | |
| if isinstance(freqs_cis, tuple): | |
| # freqs_cis: (cos, sin) in real space | |
| if head_first: | |
| assert freqs_cis[0].shape == (x.shape[-2], x.shape[-1]), f'freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}' | |
| shape = [d if i == ndim - 2 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] | |
| else: | |
| assert freqs_cis[0].shape == (x.shape[1], x.shape[-1]), f'freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}' | |
| shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] | |
| return freqs_cis[0].view(*shape), freqs_cis[1].view(*shape) | |
| else: | |
| # freqs_cis: values in complex space | |
| if head_first: | |
| assert freqs_cis.shape == (x.shape[-2], x.shape[-1]), f'freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}' | |
| shape = [d if i == ndim - 2 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] | |
| else: | |
| assert freqs_cis.shape == (x.shape[1], x.shape[-1]), f'freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}' | |
| shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] | |
| return freqs_cis.view(*shape) | |
| def rotate_half(x): | |
| x_real, x_imag = x.float().reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2] | |
| return torch.stack([-x_imag, x_real], dim=-1).flatten(3) | |
| def apply_rotary_emb( | |
| xq: torch.Tensor, | |
| xk: Optional[torch.Tensor], | |
| freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]], | |
| head_first: bool = False, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """ | |
| Apply rotary embeddings to input tensors using the given frequency tensor. | |
| This function applies rotary embeddings to the given query 'xq' and key 'xk' tensors using the provided | |
| frequency tensor 'freqs_cis'. The input tensors are reshaped as complex numbers, and the frequency tensor | |
| is reshaped for broadcasting compatibility. The resulting tensors contain rotary embeddings and are | |
| returned as real tensors. | |
| Args: | |
| xq (torch.Tensor): Query tensor to apply rotary embeddings. [B, S, H, D] | |
| xk (torch.Tensor): Key tensor to apply rotary embeddings. [B, S, H, D] | |
| freqs_cis (Union[torch.Tensor, Tuple[torch.Tensor]]): Precomputed frequency tensor for complex exponentials. | |
| head_first (bool): head dimension first (except batch dim) or not. | |
| Returns: | |
| Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings. | |
| """ | |
| xk_out = None | |
| if isinstance(freqs_cis, tuple): | |
| cos, sin = reshape_for_broadcast(freqs_cis, xq, head_first) # [S, D] | |
| cos, sin = cos.to(xq.device), sin.to(xq.device) | |
| xq_out = (xq.float() * cos + rotate_half(xq.float()) * sin).type_as(xq) | |
| if xk is not None: | |
| xk_out = (xk.float() * cos + rotate_half(xk.float()) * sin).type_as(xk) | |
| else: | |
| xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) # [B, S, H, D//2] | |
| freqs_cis = reshape_for_broadcast(freqs_cis, xq_, head_first).to(xq.device) # [S, D//2] --> [1, S, 1, D//2] | |
| xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3).type_as(xq) | |
| if xk is not None: | |
| xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) # [B, S, H, D//2] | |
| xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3).type_as(xk) | |
| return xq_out, xk_out | |
| class CrossAttention(nn.Module): | |
| """ | |
| Use QK Normalization. | |
| """ | |
| def __init__(self, | |
| qdim, | |
| kdim, | |
| num_heads, | |
| qkv_bias=True, | |
| qk_norm=False, | |
| attn_drop=0.0, | |
| proj_drop=0.0, | |
| attn_precision=None, | |
| device=None, | |
| dtype=None, | |
| operations=None, | |
| ): | |
| factory_kwargs = {'device': device, 'dtype': dtype} | |
| super().__init__() | |
| self.attn_precision = attn_precision | |
| self.qdim = qdim | |
| self.kdim = kdim | |
| self.num_heads = num_heads | |
| assert self.qdim % num_heads == 0, "self.qdim must be divisible by num_heads" | |
| self.head_dim = self.qdim // num_heads | |
| assert self.head_dim % 8 == 0 and self.head_dim <= 128, "Only support head_dim <= 128 and divisible by 8" | |
| self.scale = self.head_dim ** -0.5 | |
| self.q_proj = operations.Linear(qdim, qdim, bias=qkv_bias, **factory_kwargs) | |
| self.kv_proj = operations.Linear(kdim, 2 * qdim, bias=qkv_bias, **factory_kwargs) | |
| # TODO: eps should be 1 / 65530 if using fp16 | |
| self.q_norm = operations.LayerNorm(self.head_dim, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device) if qk_norm else nn.Identity() | |
| self.k_norm = operations.LayerNorm(self.head_dim, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device) if qk_norm else nn.Identity() | |
| self.attn_drop = nn.Dropout(attn_drop) | |
| self.out_proj = operations.Linear(qdim, qdim, bias=qkv_bias, **factory_kwargs) | |
| self.proj_drop = nn.Dropout(proj_drop) | |
| def forward(self, x, y, freqs_cis_img=None): | |
| """ | |
| Parameters | |
| ---------- | |
| x: torch.Tensor | |
| (batch, seqlen1, hidden_dim) (where hidden_dim = num heads * head dim) | |
| y: torch.Tensor | |
| (batch, seqlen2, hidden_dim2) | |
| freqs_cis_img: torch.Tensor | |
| (batch, hidden_dim // 2), RoPE for image | |
| """ | |
| b, s1, c = x.shape # [b, s1, D] | |
| _, s2, c = y.shape # [b, s2, 1024] | |
| q = self.q_proj(x).view(b, s1, self.num_heads, self.head_dim) # [b, s1, h, d] | |
| kv = self.kv_proj(y).view(b, s2, 2, self.num_heads, self.head_dim) # [b, s2, 2, h, d] | |
| k, v = kv.unbind(dim=2) # [b, s, h, d] | |
| q = self.q_norm(q) | |
| k = self.k_norm(k) | |
| # Apply RoPE if needed | |
| if freqs_cis_img is not None: | |
| qq, _ = apply_rotary_emb(q, None, freqs_cis_img) | |
| assert qq.shape == q.shape, f'qq: {qq.shape}, q: {q.shape}' | |
| q = qq | |
| q = q.transpose(-2, -3).contiguous() # q -> B, L1, H, C - B, H, L1, C | |
| k = k.transpose(-2, -3).contiguous() # k -> B, L2, H, C - B, H, C, L2 | |
| v = v.transpose(-2, -3).contiguous() | |
| context = optimized_attention(q, k, v, self.num_heads, skip_reshape=True, attn_precision=self.attn_precision) | |
| out = self.out_proj(context) # context.reshape - B, L1, -1 | |
| out = self.proj_drop(out) | |
| out_tuple = (out,) | |
| return out_tuple | |
| class Attention(nn.Module): | |
| """ | |
| We rename some layer names to align with flash attention | |
| """ | |
| def __init__(self, dim, num_heads, qkv_bias=True, qk_norm=False, attn_drop=0., proj_drop=0., attn_precision=None, dtype=None, device=None, operations=None): | |
| super().__init__() | |
| self.attn_precision = attn_precision | |
| self.dim = dim | |
| self.num_heads = num_heads | |
| assert self.dim % num_heads == 0, 'dim should be divisible by num_heads' | |
| self.head_dim = self.dim // num_heads | |
| # This assertion is aligned with flash attention | |
| assert self.head_dim % 8 == 0 and self.head_dim <= 128, "Only support head_dim <= 128 and divisible by 8" | |
| self.scale = self.head_dim ** -0.5 | |
| # qkv --> Wqkv | |
| self.Wqkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device) | |
| # TODO: eps should be 1 / 65530 if using fp16 | |
| self.q_norm = operations.LayerNorm(self.head_dim, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device) if qk_norm else nn.Identity() | |
| self.k_norm = operations.LayerNorm(self.head_dim, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device) if qk_norm else nn.Identity() | |
| self.attn_drop = nn.Dropout(attn_drop) | |
| self.out_proj = operations.Linear(dim, dim, dtype=dtype, device=device) | |
| self.proj_drop = nn.Dropout(proj_drop) | |
| def forward(self, x, freqs_cis_img=None): | |
| B, N, C = x.shape | |
| qkv = self.Wqkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) # [3, b, h, s, d] | |
| q, k, v = qkv.unbind(0) # [b, h, s, d] | |
| q = self.q_norm(q) # [b, h, s, d] | |
| k = self.k_norm(k) # [b, h, s, d] | |
| # Apply RoPE if needed | |
| if freqs_cis_img is not None: | |
| qq, kk = apply_rotary_emb(q, k, freqs_cis_img, head_first=True) | |
| assert qq.shape == q.shape and kk.shape == k.shape, \ | |
| f'qq: {qq.shape}, q: {q.shape}, kk: {kk.shape}, k: {k.shape}' | |
| q, k = qq, kk | |
| x = optimized_attention(q, k, v, self.num_heads, skip_reshape=True, attn_precision=self.attn_precision) | |
| x = self.out_proj(x) | |
| x = self.proj_drop(x) | |
| out_tuple = (x,) | |
| return out_tuple | |