File size: 4,684 Bytes
019ce84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import cv2
import numpy as np
import glob
from os.path import isfile, join
import subprocess
from IPython.display import clear_output
import os
from google.colab import files
import shutil
from io import BytesIO
import io

IMAGE_FORMATS = ('.png', '.jpg', '.jpeg', '.tiff', '.bmp', '.gif')


model_scale = "2" #@param ["2", "4", "8"] {allow-input: false}

model = RealESRGAN(device, scale=int(model_scale))
model.load_weights(f'weights/RealESRGAN_x{model_scale}.pth', download=False)


def process_input(filename):
  result_image_path = os.path.join('results/restored_imgs', os.path.basename(filename))
  image = Image.open(filename).convert('RGB')
  sr_image = model.predict(np.array(image))
  sr_image.save(result_image_path)
  print(f'Finished! Frame of the Video saved to {result_image_path}')


# assign directory
directory = 'videos' #PATH_WITH_INPUT_VIDEOS
zee = 0

def convert_frames_to_video(pathIn,pathOut,fps):
    frame_array = []
    files = [f for f in os.listdir(pathIn) if isfile(join(pathIn, f))]
    #for sorting the file names properly
    files.sort(key = lambda x: int(x[5:-4]))
    size2 = (0,0)

    for i in range(len(files)):
        filename=pathIn + files[i]
        #reading each files
        img = cv2.imread(filename)
        height, width, layers = img.shape
        size = (width,height)
        size2 = size
        print(filename)
        #inserting the frames into an image array
        frame_array.append(img)
    out = cv2.VideoWriter(pathOut,cv2.VideoWriter_fourcc(*'DIVX'), fps, size2)
    for i in range(len(frame_array)):
        # writing to a image array
        out.write(frame_array[i])
    out.release()


for filename in os.listdir(directory):

    f = os.path.join(directory, filename)
    # checking if it is a file
    if os.path.isfile(f):


      print("PROCESSING :"+str(f)+"\n")
      # Read the video from specified path

      #video to frames
      cam = cv2.VideoCapture(str(f))

      try:

          # PATH TO STORE VIDEO FRAMES
          if not os.path.exists('upload'):
              os.makedirs('upload')

      # if not created then raise error
      except OSError:
          print ('Error: Creating directory of data')

      # frame
      currentframe = 0


      while(True):

          # reading from frame
          ret,frame = cam.read()

          if ret:
              # if video is still left continue creating images
              name = 'upload/frame' + str(currentframe) + '.jpg'

              # writing the extracted images
              cv2.imwrite(name, frame)


                # increasing counter so that it will
                # show how many frames are created
              currentframe += 1
              print(currentframe)
          else:
              #deletes all the videos you uploaded for upscaling
              #for f in os.listdir(video_folder):
              #  os.remove(os.path.join(video_folder, f))

              break

        # Release all space and windows once done
      cam.release()
      cv2.destroyAllWindows()

      #apply super-resolution on all frames of a video

      # Specify the directory path
      all_frames_path = "upload"

      # Get a list of all files in the directory
      file_names = os.listdir(all_frames_path)

      # process the files
      for file_name in file_names:
        process_input(f"upload/{file_name}")


      #convert super res frames to .avi
      pathIn = 'results/restored_imgs/'

      zee = zee+1
      fName = "video"+str(zee)
      filenameVid = f"{fName}.avi"

      pathOut = "results_videos/"+filenameVid

      fps = 25.0 #change this to FPS of your source video

      convert_frames_to_video(pathIn, pathOut, fps)


      #convert .avi to .mp4
      src = 'results_videos/'
      dst = 'results_mp4_videos/'

      for root, dirs, filenames in os.walk(src, topdown=False):
          #print(filenames)
          for filename in filenames:
              print('[INFO] 1',filename)
              try:
                  _format = ''
                  if ".flv" in filename.lower():
                      _format=".flv"
                  if ".mp4" in filename.lower():
                      _format=".mp4"
                  if ".avi" in filename.lower():
                      _format=".avi"
                  if ".mov" in filename.lower():
                      _format=".mov"

                  inputfile = os.path.join(root, filename)
                  print('[INFO] 1',inputfile)
                  outputfile = os.path.join(dst, filename.lower().replace(_format, ".mp4"))
                  subprocess.call(['ffmpeg', '-i', inputfile, outputfile])
              except:
                  print("An exception occurred")