Spaces:
Runtime error
Runtime error
Update infer.py
Browse files
infer.py
CHANGED
|
@@ -1,193 +1,3 @@
|
|
| 1 |
-
# import cv2
|
| 2 |
-
# from os.path import isfile, join
|
| 3 |
-
# import subprocess
|
| 4 |
-
# import os
|
| 5 |
-
# from RealESRGAN import RealESRGAN
|
| 6 |
-
# import torch
|
| 7 |
-
# import gradio as gr
|
| 8 |
-
|
| 9 |
-
# IMAGE_FORMATS = ('.png', '.jpg', '.jpeg', '.tiff', '.bmp', '.gif')
|
| 10 |
-
|
| 11 |
-
# def inference_image(image, size):
|
| 12 |
-
# global model2
|
| 13 |
-
# global model4
|
| 14 |
-
# global model8
|
| 15 |
-
# if image is None:
|
| 16 |
-
# raise gr.Error("Image not uploaded")
|
| 17 |
-
|
| 18 |
-
# width, height = image.size
|
| 19 |
-
# if width >= 5000 or height >= 5000:
|
| 20 |
-
# raise gr.Error("The image is too large.")
|
| 21 |
-
|
| 22 |
-
# if torch.cuda.is_available():
|
| 23 |
-
# torch.cuda.empty_cache()
|
| 24 |
-
|
| 25 |
-
# if size == '2x':
|
| 26 |
-
# try:
|
| 27 |
-
# result = model2.predict(image.convert('RGB'))
|
| 28 |
-
# except torch.cuda.OutOfMemoryError as e:
|
| 29 |
-
# print(e)
|
| 30 |
-
# model2 = RealESRGAN(device, scale=2)
|
| 31 |
-
# model2.load_weights('weights/RealESRGAN_x2.pth', download=False)
|
| 32 |
-
# result = model2.predict(image.convert('RGB'))
|
| 33 |
-
# elif size == '4x':
|
| 34 |
-
# try:
|
| 35 |
-
# result = model4.predict(image.convert('RGB'))
|
| 36 |
-
# except torch.cuda.OutOfMemoryError as e:
|
| 37 |
-
# print(e)
|
| 38 |
-
# model4 = RealESRGAN(device, scale=4)
|
| 39 |
-
# model4.load_weights('weights/RealESRGAN_x4.pth', download=False)
|
| 40 |
-
# result = model2.predict(image.convert('RGB'))
|
| 41 |
-
# else:
|
| 42 |
-
# try:
|
| 43 |
-
# result = model8.predict(image.convert('RGB'))
|
| 44 |
-
# except torch.cuda.OutOfMemoryError as e:
|
| 45 |
-
# print(e)
|
| 46 |
-
# model8 = RealESRGAN(device, scale=8)
|
| 47 |
-
# model8.load_weights('weights/RealESRGAN_x8.pth', download=False)
|
| 48 |
-
# result = model2.predict(image.convert('RGB'))
|
| 49 |
-
|
| 50 |
-
# print(f"Frame of the Video size ({device}): {size} ... OK")
|
| 51 |
-
# return result
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
# # assign directory
|
| 55 |
-
# directory = 'videos' #PATH_WITH_INPUT_VIDEOS
|
| 56 |
-
# zee = 0
|
| 57 |
-
|
| 58 |
-
# def convert_frames_to_video(pathIn,pathOut,fps):
|
| 59 |
-
# global INPUT_DIR
|
| 60 |
-
# cap = cv2.VideoCapture(f'/{INPUT_DIR}/videos/input.mp4')
|
| 61 |
-
# fps = cap.get(cv2.CAP_PROP_FPS)
|
| 62 |
-
# frame_array = []
|
| 63 |
-
# files = [f for f in os.listdir(pathIn) if isfile(join(pathIn, f))]
|
| 64 |
-
# #for sorting the file names properly
|
| 65 |
-
# files.sort(key = lambda x: int(x[5:-4]))
|
| 66 |
-
# size2 = (0,0)
|
| 67 |
-
|
| 68 |
-
# for i in range(len(files)):
|
| 69 |
-
# filename=pathIn + files[i]
|
| 70 |
-
# #reading each files
|
| 71 |
-
# img = cv2.imread(filename)
|
| 72 |
-
# height, width, layers = img.shape
|
| 73 |
-
# size = (width,height)
|
| 74 |
-
# size2 = size
|
| 75 |
-
# print(filename)
|
| 76 |
-
# #inserting the frames into an image array
|
| 77 |
-
# frame_array.append(img)
|
| 78 |
-
# out = cv2.VideoWriter(pathOut,cv2.VideoWriter_fourcc(*'DIVX'), fps, size2)
|
| 79 |
-
# for i in range(len(frame_array)):
|
| 80 |
-
# # writing to a image array
|
| 81 |
-
# out.write(frame_array[i])
|
| 82 |
-
# out.release()
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
# for filename in os.listdir(directory):
|
| 86 |
-
|
| 87 |
-
# f = os.path.join(directory, filename)
|
| 88 |
-
# # checking if it is a file
|
| 89 |
-
# if os.path.isfile(f):
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
# print("PROCESSING :"+str(f)+"\n")
|
| 93 |
-
# # Read the video from specified path
|
| 94 |
-
|
| 95 |
-
# #video to frames
|
| 96 |
-
# cam = cv2.VideoCapture(str(f))
|
| 97 |
-
|
| 98 |
-
# try:
|
| 99 |
-
|
| 100 |
-
# # PATH TO STORE VIDEO FRAMES
|
| 101 |
-
# if not os.path.exists(f'/{INPUT_DIR}/upload/'):
|
| 102 |
-
# os.makedirs(f'/{INPUT_DIR}/upload/')
|
| 103 |
-
|
| 104 |
-
# # if not created then raise error
|
| 105 |
-
# except OSError:
|
| 106 |
-
# print ('Error: Creating directory of data')
|
| 107 |
-
|
| 108 |
-
# # frame
|
| 109 |
-
# currentframe = 0
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
# while(True):
|
| 113 |
-
|
| 114 |
-
# # reading from frame
|
| 115 |
-
# ret,frame = cam.read()
|
| 116 |
-
|
| 117 |
-
# if ret:
|
| 118 |
-
# # if video is still left continue creating images
|
| 119 |
-
# name = f'/{INPUT_DIR}/upload/frame' + str(currentframe) + '.jpg'
|
| 120 |
-
|
| 121 |
-
# # writing the extracted images
|
| 122 |
-
# cv2.imwrite(name, frame)
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
# # increasing counter so that it will
|
| 126 |
-
# # show how many frames are created
|
| 127 |
-
# currentframe += 1
|
| 128 |
-
# print(currentframe)
|
| 129 |
-
# else:
|
| 130 |
-
# #deletes all the videos you uploaded for upscaling
|
| 131 |
-
# #for f in os.listdir(video_folder):
|
| 132 |
-
# # os.remove(os.path.join(video_folder, f))
|
| 133 |
-
|
| 134 |
-
# break
|
| 135 |
-
|
| 136 |
-
# # Release all space and windows once done
|
| 137 |
-
# cam.release()
|
| 138 |
-
# cv2.destroyAllWindows()
|
| 139 |
-
|
| 140 |
-
# #apply super-resolution on all frames of a video
|
| 141 |
-
|
| 142 |
-
# # Specify the directory path
|
| 143 |
-
# all_frames_path = f"/{INPUT_DIR}/upload/"
|
| 144 |
-
|
| 145 |
-
# # Get a list of all files in the directory
|
| 146 |
-
# file_names = os.listdir(all_frames_path)
|
| 147 |
-
|
| 148 |
-
# # process the files
|
| 149 |
-
# for file_name in file_names:
|
| 150 |
-
# inference_image(f"/{INPUT_DIR}/upload/{file_name}")
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
# #convert super res frames to .avi
|
| 154 |
-
# pathIn = f'/{INPUT_DIR}/results/restored_imgs/'
|
| 155 |
-
|
| 156 |
-
# zee = zee+1
|
| 157 |
-
# fName = "video"+str(zee)
|
| 158 |
-
# filenameVid = f"{fName}.avi"
|
| 159 |
-
|
| 160 |
-
# pathOut = f"/{INPUT_DIR}/results_videos/"+filenameVid
|
| 161 |
-
|
| 162 |
-
# convert_frames_to_video(pathIn, pathOut, fps)
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
# #convert .avi to .mp4
|
| 166 |
-
# src = f'/{INPUT_DIR}/results_videos/'
|
| 167 |
-
# dst = f'/{INPUT_DIR}/results_mp4_videos/'
|
| 168 |
-
|
| 169 |
-
# for root, dirs, filenames in os.walk(src, topdown=False):
|
| 170 |
-
# #print(filenames)
|
| 171 |
-
# for filename in filenames:
|
| 172 |
-
# print('[INFO] 1',filename)
|
| 173 |
-
# try:
|
| 174 |
-
# _format = ''
|
| 175 |
-
# if ".flv" in filename.lower():
|
| 176 |
-
# _format=".flv"
|
| 177 |
-
# if ".mp4" in filename.lower():
|
| 178 |
-
# _format=".mp4"
|
| 179 |
-
# if ".avi" in filename.lower():
|
| 180 |
-
# _format=".avi"
|
| 181 |
-
# if ".mov" in filename.lower():
|
| 182 |
-
# _format=".mov"
|
| 183 |
-
|
| 184 |
-
# inputfile = os.path.join(root, filename)
|
| 185 |
-
# print('[INFO] 1',inputfile)
|
| 186 |
-
# outputfile = os.path.join(dst, filename.lower().replace(_format, ".mp4"))
|
| 187 |
-
# subprocess.call(['ffmpeg', '-i', inputfile, outputfile])
|
| 188 |
-
# except:
|
| 189 |
-
# print("An exception occurred")
|
| 190 |
-
|
| 191 |
from PIL import Image
|
| 192 |
import cv2 as cv
|
| 193 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from PIL import Image
|
| 2 |
import cv2 as cv
|
| 3 |
import torch
|