File size: 766 Bytes
e0b4e38
 
4d75a6f
e0b4e38
f150bb6
e0b4e38
 
 
f150bb6
e0b4e38
 
 
 
 
f150bb6
e0b4e38
 
 
 
 
 
 
 
 
f150bb6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "gpt-3.5-turbo"

# Load the model and tokenizer
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Generate a response
def generate_response(prompt):
    inputs = tokenizer.encode(prompt, return_tensors="pt")
    response = model.generate(inputs, max_length=100, num_return_sequences=1)
    return tokenizer.decode(response[0], skip_special_tokens=True)

# Gradio interface
def chatbot_interface(prompt):
    response = generate_response(prompt)
    return response

# Create a Gradio interface
iface = gr.Interface(fn=chatbot_interface, inputs="text", outputs="text")

# Launch the interface
iface.launch()