Spaces:
Runtime error
Runtime error
| """ | |
| This file is part of ComfyUI. | |
| Copyright (C) 2024 Comfy | |
| This program is free software: you can redistribute it and/or modify | |
| it under the terms of the GNU General Public License as published by | |
| the Free Software Foundation, either version 3 of the License, or | |
| (at your option) any later version. | |
| This program is distributed in the hope that it will be useful, | |
| but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
| GNU General Public License for more details. | |
| You should have received a copy of the GNU General Public License | |
| along with this program. If not, see <https://www.gnu.org/licenses/>. | |
| """ | |
| from __future__ import annotations | |
| import comfy.utils | |
| import comfy.model_management | |
| import comfy.model_base | |
| import logging | |
| import torch | |
| LORA_CLIP_MAP = { | |
| "mlp.fc1": "mlp_fc1", | |
| "mlp.fc2": "mlp_fc2", | |
| "self_attn.k_proj": "self_attn_k_proj", | |
| "self_attn.q_proj": "self_attn_q_proj", | |
| "self_attn.v_proj": "self_attn_v_proj", | |
| "self_attn.out_proj": "self_attn_out_proj", | |
| } | |
| def load_lora(lora, to_load): | |
| patch_dict = {} | |
| loaded_keys = set() | |
| for x in to_load: | |
| alpha_name = "{}.alpha".format(x) | |
| alpha = None | |
| if alpha_name in lora.keys(): | |
| alpha = lora[alpha_name].item() | |
| loaded_keys.add(alpha_name) | |
| dora_scale_name = "{}.dora_scale".format(x) | |
| dora_scale = None | |
| if dora_scale_name in lora.keys(): | |
| dora_scale = lora[dora_scale_name] | |
| loaded_keys.add(dora_scale_name) | |
| reshape_name = "{}.reshape_weight".format(x) | |
| reshape = None | |
| if reshape_name in lora.keys(): | |
| try: | |
| reshape = lora[reshape_name].tolist() | |
| loaded_keys.add(reshape_name) | |
| except: | |
| pass | |
| regular_lora = "{}.lora_up.weight".format(x) | |
| diffusers_lora = "{}_lora.up.weight".format(x) | |
| diffusers2_lora = "{}.lora_B.weight".format(x) | |
| diffusers3_lora = "{}.lora.up.weight".format(x) | |
| mochi_lora = "{}.lora_B".format(x) | |
| transformers_lora = "{}.lora_linear_layer.up.weight".format(x) | |
| A_name = None | |
| if regular_lora in lora.keys(): | |
| A_name = regular_lora | |
| B_name = "{}.lora_down.weight".format(x) | |
| mid_name = "{}.lora_mid.weight".format(x) | |
| elif diffusers_lora in lora.keys(): | |
| A_name = diffusers_lora | |
| B_name = "{}_lora.down.weight".format(x) | |
| mid_name = None | |
| elif diffusers2_lora in lora.keys(): | |
| A_name = diffusers2_lora | |
| B_name = "{}.lora_A.weight".format(x) | |
| mid_name = None | |
| elif diffusers3_lora in lora.keys(): | |
| A_name = diffusers3_lora | |
| B_name = "{}.lora.down.weight".format(x) | |
| mid_name = None | |
| elif mochi_lora in lora.keys(): | |
| A_name = mochi_lora | |
| B_name = "{}.lora_A".format(x) | |
| mid_name = None | |
| elif transformers_lora in lora.keys(): | |
| A_name = transformers_lora | |
| B_name ="{}.lora_linear_layer.down.weight".format(x) | |
| mid_name = None | |
| if A_name is not None: | |
| mid = None | |
| if mid_name is not None and mid_name in lora.keys(): | |
| mid = lora[mid_name] | |
| loaded_keys.add(mid_name) | |
| patch_dict[to_load[x]] = ("lora", (lora[A_name], lora[B_name], alpha, mid, dora_scale, reshape)) | |
| loaded_keys.add(A_name) | |
| loaded_keys.add(B_name) | |
| ######## loha | |
| hada_w1_a_name = "{}.hada_w1_a".format(x) | |
| hada_w1_b_name = "{}.hada_w1_b".format(x) | |
| hada_w2_a_name = "{}.hada_w2_a".format(x) | |
| hada_w2_b_name = "{}.hada_w2_b".format(x) | |
| hada_t1_name = "{}.hada_t1".format(x) | |
| hada_t2_name = "{}.hada_t2".format(x) | |
| if hada_w1_a_name in lora.keys(): | |
| hada_t1 = None | |
| hada_t2 = None | |
| if hada_t1_name in lora.keys(): | |
| hada_t1 = lora[hada_t1_name] | |
| hada_t2 = lora[hada_t2_name] | |
| loaded_keys.add(hada_t1_name) | |
| loaded_keys.add(hada_t2_name) | |
| patch_dict[to_load[x]] = ("loha", (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2, dora_scale)) | |
| loaded_keys.add(hada_w1_a_name) | |
| loaded_keys.add(hada_w1_b_name) | |
| loaded_keys.add(hada_w2_a_name) | |
| loaded_keys.add(hada_w2_b_name) | |
| ######## lokr | |
| lokr_w1_name = "{}.lokr_w1".format(x) | |
| lokr_w2_name = "{}.lokr_w2".format(x) | |
| lokr_w1_a_name = "{}.lokr_w1_a".format(x) | |
| lokr_w1_b_name = "{}.lokr_w1_b".format(x) | |
| lokr_t2_name = "{}.lokr_t2".format(x) | |
| lokr_w2_a_name = "{}.lokr_w2_a".format(x) | |
| lokr_w2_b_name = "{}.lokr_w2_b".format(x) | |
| lokr_w1 = None | |
| if lokr_w1_name in lora.keys(): | |
| lokr_w1 = lora[lokr_w1_name] | |
| loaded_keys.add(lokr_w1_name) | |
| lokr_w2 = None | |
| if lokr_w2_name in lora.keys(): | |
| lokr_w2 = lora[lokr_w2_name] | |
| loaded_keys.add(lokr_w2_name) | |
| lokr_w1_a = None | |
| if lokr_w1_a_name in lora.keys(): | |
| lokr_w1_a = lora[lokr_w1_a_name] | |
| loaded_keys.add(lokr_w1_a_name) | |
| lokr_w1_b = None | |
| if lokr_w1_b_name in lora.keys(): | |
| lokr_w1_b = lora[lokr_w1_b_name] | |
| loaded_keys.add(lokr_w1_b_name) | |
| lokr_w2_a = None | |
| if lokr_w2_a_name in lora.keys(): | |
| lokr_w2_a = lora[lokr_w2_a_name] | |
| loaded_keys.add(lokr_w2_a_name) | |
| lokr_w2_b = None | |
| if lokr_w2_b_name in lora.keys(): | |
| lokr_w2_b = lora[lokr_w2_b_name] | |
| loaded_keys.add(lokr_w2_b_name) | |
| lokr_t2 = None | |
| if lokr_t2_name in lora.keys(): | |
| lokr_t2 = lora[lokr_t2_name] | |
| loaded_keys.add(lokr_t2_name) | |
| if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None): | |
| patch_dict[to_load[x]] = ("lokr", (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2, dora_scale)) | |
| #glora | |
| a1_name = "{}.a1.weight".format(x) | |
| a2_name = "{}.a2.weight".format(x) | |
| b1_name = "{}.b1.weight".format(x) | |
| b2_name = "{}.b2.weight".format(x) | |
| if a1_name in lora: | |
| patch_dict[to_load[x]] = ("glora", (lora[a1_name], lora[a2_name], lora[b1_name], lora[b2_name], alpha, dora_scale)) | |
| loaded_keys.add(a1_name) | |
| loaded_keys.add(a2_name) | |
| loaded_keys.add(b1_name) | |
| loaded_keys.add(b2_name) | |
| w_norm_name = "{}.w_norm".format(x) | |
| b_norm_name = "{}.b_norm".format(x) | |
| w_norm = lora.get(w_norm_name, None) | |
| b_norm = lora.get(b_norm_name, None) | |
| if w_norm is not None: | |
| loaded_keys.add(w_norm_name) | |
| patch_dict[to_load[x]] = ("diff", (w_norm,)) | |
| if b_norm is not None: | |
| loaded_keys.add(b_norm_name) | |
| patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (b_norm,)) | |
| diff_name = "{}.diff".format(x) | |
| diff_weight = lora.get(diff_name, None) | |
| if diff_weight is not None: | |
| patch_dict[to_load[x]] = ("diff", (diff_weight,)) | |
| loaded_keys.add(diff_name) | |
| diff_bias_name = "{}.diff_b".format(x) | |
| diff_bias = lora.get(diff_bias_name, None) | |
| if diff_bias is not None: | |
| patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (diff_bias,)) | |
| loaded_keys.add(diff_bias_name) | |
| set_weight_name = "{}.set_weight".format(x) | |
| set_weight = lora.get(set_weight_name, None) | |
| if set_weight is not None: | |
| patch_dict[to_load[x]] = ("set", (set_weight,)) | |
| loaded_keys.add(set_weight_name) | |
| for x in lora.keys(): | |
| if x not in loaded_keys: | |
| logging.warning("lora key not loaded: {}".format(x)) | |
| return patch_dict | |
| def model_lora_keys_clip(model, key_map={}): | |
| sdk = model.state_dict().keys() | |
| for k in sdk: | |
| if k.endswith(".weight"): | |
| key_map["text_encoders.{}".format(k[:-len(".weight")])] = k #generic lora format without any weird key names | |
| text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}" | |
| clip_l_present = False | |
| clip_g_present = False | |
| for b in range(32): #TODO: clean up | |
| for c in LORA_CLIP_MAP: | |
| k = "clip_h.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c) | |
| if k in sdk: | |
| lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c]) | |
| key_map[lora_key] = k | |
| lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) | |
| key_map[lora_key] = k | |
| lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora | |
| key_map[lora_key] = k | |
| k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c) | |
| if k in sdk: | |
| lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c]) | |
| key_map[lora_key] = k | |
| lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base | |
| key_map[lora_key] = k | |
| clip_l_present = True | |
| lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora | |
| key_map[lora_key] = k | |
| k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c) | |
| if k in sdk: | |
| clip_g_present = True | |
| if clip_l_present: | |
| lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base | |
| key_map[lora_key] = k | |
| lora_key = "text_encoder_2.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora | |
| key_map[lora_key] = k | |
| else: | |
| lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner | |
| key_map[lora_key] = k | |
| lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora | |
| key_map[lora_key] = k | |
| lora_key = "lora_prior_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #cascade lora: TODO put lora key prefix in the model config | |
| key_map[lora_key] = k | |
| for k in sdk: | |
| if k.endswith(".weight"): | |
| if k.startswith("t5xxl.transformer."):#OneTrainer SD3 and Flux lora | |
| l_key = k[len("t5xxl.transformer."):-len(".weight")] | |
| t5_index = 1 | |
| if clip_g_present: | |
| t5_index += 1 | |
| if clip_l_present: | |
| t5_index += 1 | |
| if t5_index == 2: | |
| key_map["lora_te{}_{}".format(t5_index, l_key.replace(".", "_"))] = k #OneTrainer Flux | |
| t5_index += 1 | |
| key_map["lora_te{}_{}".format(t5_index, l_key.replace(".", "_"))] = k | |
| elif k.startswith("hydit_clip.transformer.bert."): #HunyuanDiT Lora | |
| l_key = k[len("hydit_clip.transformer.bert."):-len(".weight")] | |
| lora_key = "lora_te1_{}".format(l_key.replace(".", "_")) | |
| key_map[lora_key] = k | |
| k = "clip_g.transformer.text_projection.weight" | |
| if k in sdk: | |
| key_map["lora_prior_te_text_projection"] = k #cascade lora? | |
| # key_map["text_encoder.text_projection"] = k #TODO: check if other lora have the text_projection too | |
| key_map["lora_te2_text_projection"] = k #OneTrainer SD3 lora | |
| k = "clip_l.transformer.text_projection.weight" | |
| if k in sdk: | |
| key_map["lora_te1_text_projection"] = k #OneTrainer SD3 lora, not necessary but omits warning | |
| return key_map | |
| def model_lora_keys_unet(model, key_map={}): | |
| sd = model.state_dict() | |
| sdk = sd.keys() | |
| for k in sdk: | |
| if k.startswith("diffusion_model."): | |
| if k.endswith(".weight"): | |
| key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_") | |
| key_map["lora_unet_{}".format(key_lora)] = k | |
| key_map["lora_prior_unet_{}".format(key_lora)] = k #cascade lora: TODO put lora key prefix in the model config | |
| key_map["{}".format(k[:-len(".weight")])] = k #generic lora format without any weird key names | |
| else: | |
| key_map["{}".format(k)] = k #generic lora format for not .weight without any weird key names | |
| diffusers_keys = comfy.utils.unet_to_diffusers(model.model_config.unet_config) | |
| for k in diffusers_keys: | |
| if k.endswith(".weight"): | |
| unet_key = "diffusion_model.{}".format(diffusers_keys[k]) | |
| key_lora = k[:-len(".weight")].replace(".", "_") | |
| key_map["lora_unet_{}".format(key_lora)] = unet_key | |
| key_map["lycoris_{}".format(key_lora)] = unet_key #simpletuner lycoris format | |
| diffusers_lora_prefix = ["", "unet."] | |
| for p in diffusers_lora_prefix: | |
| diffusers_lora_key = "{}{}".format(p, k[:-len(".weight")].replace(".to_", ".processor.to_")) | |
| if diffusers_lora_key.endswith(".to_out.0"): | |
| diffusers_lora_key = diffusers_lora_key[:-2] | |
| key_map[diffusers_lora_key] = unet_key | |
| if isinstance(model, comfy.model_base.SD3): #Diffusers lora SD3 | |
| diffusers_keys = comfy.utils.mmdit_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.") | |
| for k in diffusers_keys: | |
| if k.endswith(".weight"): | |
| to = diffusers_keys[k] | |
| key_lora = "transformer.{}".format(k[:-len(".weight")]) #regular diffusers sd3 lora format | |
| key_map[key_lora] = to | |
| key_lora = "base_model.model.{}".format(k[:-len(".weight")]) #format for flash-sd3 lora and others? | |
| key_map[key_lora] = to | |
| key_lora = "lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_")) #OneTrainer lora | |
| key_map[key_lora] = to | |
| key_lora = "lycoris_{}".format(k[:-len(".weight")].replace(".", "_")) #simpletuner lycoris format | |
| key_map[key_lora] = to | |
| if isinstance(model, comfy.model_base.AuraFlow): #Diffusers lora AuraFlow | |
| diffusers_keys = comfy.utils.auraflow_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.") | |
| for k in diffusers_keys: | |
| if k.endswith(".weight"): | |
| to = diffusers_keys[k] | |
| key_lora = "transformer.{}".format(k[:-len(".weight")]) #simpletrainer and probably regular diffusers lora format | |
| key_map[key_lora] = to | |
| if isinstance(model, comfy.model_base.HunyuanDiT): | |
| for k in sdk: | |
| if k.startswith("diffusion_model.") and k.endswith(".weight"): | |
| key_lora = k[len("diffusion_model."):-len(".weight")] | |
| key_map["base_model.model.{}".format(key_lora)] = k #official hunyuan lora format | |
| if isinstance(model, comfy.model_base.Flux): #Diffusers lora Flux | |
| diffusers_keys = comfy.utils.flux_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.") | |
| for k in diffusers_keys: | |
| if k.endswith(".weight"): | |
| to = diffusers_keys[k] | |
| key_map["transformer.{}".format(k[:-len(".weight")])] = to #simpletrainer and probably regular diffusers flux lora format | |
| key_map["lycoris_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #simpletrainer lycoris | |
| key_map["lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #onetrainer | |
| if isinstance(model, comfy.model_base.GenmoMochi): | |
| for k in sdk: | |
| if k.startswith("diffusion_model.") and k.endswith(".weight"): #Official Mochi lora format | |
| key_lora = k[len("diffusion_model."):-len(".weight")] | |
| key_map["{}".format(key_lora)] = k | |
| return key_map | |
| def weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function): | |
| dora_scale = comfy.model_management.cast_to_device(dora_scale, weight.device, intermediate_dtype) | |
| lora_diff *= alpha | |
| weight_calc = weight + function(lora_diff).type(weight.dtype) | |
| weight_norm = ( | |
| weight_calc.transpose(0, 1) | |
| .reshape(weight_calc.shape[1], -1) | |
| .norm(dim=1, keepdim=True) | |
| .reshape(weight_calc.shape[1], *[1] * (weight_calc.dim() - 1)) | |
| .transpose(0, 1) | |
| ) | |
| weight_calc *= (dora_scale / weight_norm).type(weight.dtype) | |
| if strength != 1.0: | |
| weight_calc -= weight | |
| weight += strength * (weight_calc) | |
| else: | |
| weight[:] = weight_calc | |
| return weight | |
| def pad_tensor_to_shape(tensor: torch.Tensor, new_shape: list[int]) -> torch.Tensor: | |
| """ | |
| Pad a tensor to a new shape with zeros. | |
| Args: | |
| tensor (torch.Tensor): The original tensor to be padded. | |
| new_shape (List[int]): The desired shape of the padded tensor. | |
| Returns: | |
| torch.Tensor: A new tensor padded with zeros to the specified shape. | |
| Note: | |
| If the new shape is smaller than the original tensor in any dimension, | |
| the original tensor will be truncated in that dimension. | |
| """ | |
| if any([new_shape[i] < tensor.shape[i] for i in range(len(new_shape))]): | |
| raise ValueError("The new shape must be larger than the original tensor in all dimensions") | |
| if len(new_shape) != len(tensor.shape): | |
| raise ValueError("The new shape must have the same number of dimensions as the original tensor") | |
| # Create a new tensor filled with zeros | |
| padded_tensor = torch.zeros(new_shape, dtype=tensor.dtype, device=tensor.device) | |
| # Create slicing tuples for both tensors | |
| orig_slices = tuple(slice(0, dim) for dim in tensor.shape) | |
| new_slices = tuple(slice(0, dim) for dim in tensor.shape) | |
| # Copy the original tensor into the new tensor | |
| padded_tensor[new_slices] = tensor[orig_slices] | |
| return padded_tensor | |
| def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32): | |
| for p in patches: | |
| strength = p[0] | |
| v = p[1] | |
| strength_model = p[2] | |
| offset = p[3] | |
| function = p[4] | |
| if function is None: | |
| function = lambda a: a | |
| old_weight = None | |
| if offset is not None: | |
| old_weight = weight | |
| weight = weight.narrow(offset[0], offset[1], offset[2]) | |
| if strength_model != 1.0: | |
| weight *= strength_model | |
| if isinstance(v, list): | |
| v = (calculate_weight(v[1:], v[0][1](comfy.model_management.cast_to_device(v[0][0], weight.device, intermediate_dtype, copy=True), inplace=True), key, intermediate_dtype=intermediate_dtype), ) | |
| if len(v) == 1: | |
| patch_type = "diff" | |
| elif len(v) == 2: | |
| patch_type = v[0] | |
| v = v[1] | |
| if patch_type == "diff": | |
| diff: torch.Tensor = v[0] | |
| # An extra flag to pad the weight if the diff's shape is larger than the weight | |
| do_pad_weight = len(v) > 1 and v[1]['pad_weight'] | |
| if do_pad_weight and diff.shape != weight.shape: | |
| logging.info("Pad weight {} from {} to shape: {}".format(key, weight.shape, diff.shape)) | |
| weight = pad_tensor_to_shape(weight, diff.shape) | |
| if strength != 0.0: | |
| if diff.shape != weight.shape: | |
| logging.warning("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, diff.shape, weight.shape)) | |
| else: | |
| weight += function(strength * comfy.model_management.cast_to_device(diff, weight.device, weight.dtype)) | |
| elif patch_type == "set": | |
| weight.copy_(v[0]) | |
| elif patch_type == "lora": #lora/locon | |
| mat1 = comfy.model_management.cast_to_device(v[0], weight.device, intermediate_dtype) | |
| mat2 = comfy.model_management.cast_to_device(v[1], weight.device, intermediate_dtype) | |
| dora_scale = v[4] | |
| reshape = v[5] | |
| if reshape is not None: | |
| weight = pad_tensor_to_shape(weight, reshape) | |
| if v[2] is not None: | |
| alpha = v[2] / mat2.shape[0] | |
| else: | |
| alpha = 1.0 | |
| if v[3] is not None: | |
| #locon mid weights, hopefully the math is fine because I didn't properly test it | |
| mat3 = comfy.model_management.cast_to_device(v[3], weight.device, intermediate_dtype) | |
| final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]] | |
| mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1) | |
| try: | |
| lora_diff = torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)).reshape(weight.shape) | |
| if dora_scale is not None: | |
| weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function) | |
| else: | |
| weight += function(((strength * alpha) * lora_diff).type(weight.dtype)) | |
| except Exception as e: | |
| logging.error("ERROR {} {} {}".format(patch_type, key, e)) | |
| elif patch_type == "lokr": | |
| w1 = v[0] | |
| w2 = v[1] | |
| w1_a = v[3] | |
| w1_b = v[4] | |
| w2_a = v[5] | |
| w2_b = v[6] | |
| t2 = v[7] | |
| dora_scale = v[8] | |
| dim = None | |
| if w1 is None: | |
| dim = w1_b.shape[0] | |
| w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, intermediate_dtype), | |
| comfy.model_management.cast_to_device(w1_b, weight.device, intermediate_dtype)) | |
| else: | |
| w1 = comfy.model_management.cast_to_device(w1, weight.device, intermediate_dtype) | |
| if w2 is None: | |
| dim = w2_b.shape[0] | |
| if t2 is None: | |
| w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype), | |
| comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype)) | |
| else: | |
| w2 = torch.einsum('i j k l, j r, i p -> p r k l', | |
| comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype), | |
| comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype), | |
| comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype)) | |
| else: | |
| w2 = comfy.model_management.cast_to_device(w2, weight.device, intermediate_dtype) | |
| if len(w2.shape) == 4: | |
| w1 = w1.unsqueeze(2).unsqueeze(2) | |
| if v[2] is not None and dim is not None: | |
| alpha = v[2] / dim | |
| else: | |
| alpha = 1.0 | |
| try: | |
| lora_diff = torch.kron(w1, w2).reshape(weight.shape) | |
| if dora_scale is not None: | |
| weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function) | |
| else: | |
| weight += function(((strength * alpha) * lora_diff).type(weight.dtype)) | |
| except Exception as e: | |
| logging.error("ERROR {} {} {}".format(patch_type, key, e)) | |
| elif patch_type == "loha": | |
| w1a = v[0] | |
| w1b = v[1] | |
| if v[2] is not None: | |
| alpha = v[2] / w1b.shape[0] | |
| else: | |
| alpha = 1.0 | |
| w2a = v[3] | |
| w2b = v[4] | |
| dora_scale = v[7] | |
| if v[5] is not None: #cp decomposition | |
| t1 = v[5] | |
| t2 = v[6] | |
| m1 = torch.einsum('i j k l, j r, i p -> p r k l', | |
| comfy.model_management.cast_to_device(t1, weight.device, intermediate_dtype), | |
| comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype), | |
| comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype)) | |
| m2 = torch.einsum('i j k l, j r, i p -> p r k l', | |
| comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype), | |
| comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype), | |
| comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype)) | |
| else: | |
| m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype), | |
| comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype)) | |
| m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype), | |
| comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype)) | |
| try: | |
| lora_diff = (m1 * m2).reshape(weight.shape) | |
| if dora_scale is not None: | |
| weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function) | |
| else: | |
| weight += function(((strength * alpha) * lora_diff).type(weight.dtype)) | |
| except Exception as e: | |
| logging.error("ERROR {} {} {}".format(patch_type, key, e)) | |
| elif patch_type == "glora": | |
| dora_scale = v[5] | |
| old_glora = False | |
| if v[3].shape[1] == v[2].shape[0] == v[0].shape[0] == v[1].shape[1]: | |
| rank = v[0].shape[0] | |
| old_glora = True | |
| if v[3].shape[0] == v[2].shape[1] == v[0].shape[1] == v[1].shape[0]: | |
| if old_glora and v[1].shape[0] == weight.shape[0] and weight.shape[0] == weight.shape[1]: | |
| pass | |
| else: | |
| old_glora = False | |
| rank = v[1].shape[0] | |
| a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, intermediate_dtype) | |
| a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, intermediate_dtype) | |
| b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, intermediate_dtype) | |
| b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, intermediate_dtype) | |
| if v[4] is not None: | |
| alpha = v[4] / rank | |
| else: | |
| alpha = 1.0 | |
| try: | |
| if old_glora: | |
| lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1).to(dtype=intermediate_dtype), a2), a1)).reshape(weight.shape) #old lycoris glora | |
| else: | |
| if weight.dim() > 2: | |
| lora_diff = torch.einsum("o i ..., i j -> o j ...", torch.einsum("o i ..., i j -> o j ...", weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape) | |
| else: | |
| lora_diff = torch.mm(torch.mm(weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape) | |
| lora_diff += torch.mm(b1, b2).reshape(weight.shape) | |
| if dora_scale is not None: | |
| weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function) | |
| else: | |
| weight += function(((strength * alpha) * lora_diff).type(weight.dtype)) | |
| except Exception as e: | |
| logging.error("ERROR {} {} {}".format(patch_type, key, e)) | |
| else: | |
| logging.warning("patch type not recognized {} {}".format(patch_type, key)) | |
| if old_weight is not None: | |
| weight = old_weight | |
| return weight | |