Spaces:
Build error
Build error
fix pose rendering
Browse files- jaxnerf/nerf/clip_utils.py +43 -59
jaxnerf/nerf/clip_utils.py
CHANGED
|
@@ -9,38 +9,53 @@ import jax.numpy as jnp
|
|
| 9 |
import numpy as np
|
| 10 |
from transformers import FlaxCLIPModel
|
| 11 |
|
|
|
|
|
|
|
| 12 |
FLAGS = flags.FLAGS
|
| 13 |
-
# import jmp
|
| 14 |
-
# my_policy = jmp.Policy(compute_dtype=np.float16,
|
| 15 |
-
# param_dtype=np.float16,
|
| 16 |
-
# output_dtype=np.float16)
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
@partial(jax.jit, static_argnums=[0, 1])
|
| 20 |
-
def
|
| 21 |
# the batch is without shard
|
| 22 |
random_rays = batch["random_rays"]
|
| 23 |
-
#rng, key_0, key_1 = rng
|
| 24 |
rng, key_0, key_1 = random.split(rng,3)
|
| 25 |
|
| 26 |
def semantic_loss(variables):
|
| 27 |
-
|
| 28 |
-
# TODO @Alex: (alt) apply mixed precision
|
| 29 |
-
src_ret = model.apply(variables, key_0, key_1, random_rays, False)
|
| 30 |
-
src_image, _, _ = src_ret[-1]
|
| 31 |
# reshape flat pixel to an image (assume 3 channels & square shape)
|
| 32 |
w = int(math.sqrt(src_image.shape[0]))
|
| 33 |
-
src_image = src_image.reshape([
|
| 34 |
-
|
| 35 |
-
src_embedding = clip_model.get_image_features(pixel_values=src_image)
|
| 36 |
src_embedding /= jnp.linalg.norm(src_embedding, axis=-1, keepdims=True)
|
| 37 |
src_embedding = jnp.array(src_embedding)
|
| 38 |
target_embedding = batch["embedding"]
|
| 39 |
-
sc_loss = 0.5 *
|
| 40 |
-
return sc_loss *
|
| 41 |
-
|
| 42 |
-
sc_loss, grad
|
| 43 |
-
return sc_loss, grad
|
| 44 |
|
| 45 |
def trans_t(t):
|
| 46 |
return jnp.array([
|
|
@@ -49,39 +64,34 @@ def trans_t(t):
|
|
| 49 |
[0, 0, 1, t],
|
| 50 |
[0, 0, 0, 1]], dtype=jnp.float32)
|
| 51 |
|
| 52 |
-
|
| 53 |
def rot_phi(phi):
|
| 54 |
return jnp.array([
|
| 55 |
[1, 0, 0, 0],
|
| 56 |
-
[0, jnp.cos(phi),
|
| 57 |
-
[0
|
| 58 |
[0, 0, 0, 1]], dtype=jnp.float32)
|
| 59 |
|
| 60 |
-
|
| 61 |
def rot_theta(th):
|
| 62 |
return jnp.array([
|
| 63 |
-
[
|
| 64 |
[0, 1, 0, 0],
|
| 65 |
-
[
|
| 66 |
[0, 0, 0, 1]], dtype=jnp.float32)
|
| 67 |
|
| 68 |
-
|
| 69 |
-
def pose_spherical(theta, phi, radius):
|
| 70 |
c2w = trans_t(radius)
|
| 71 |
-
c2w = rot_phi(phi
|
| 72 |
-
c2w = rot_theta(theta
|
| 73 |
c2w = jnp.array([[-1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]) @ c2w
|
| 74 |
return c2w
|
| 75 |
|
| 76 |
-
|
| 77 |
def random_pose(rng, bds):
|
| 78 |
rng, *rng_inputs = jax.random.split(rng, 3)
|
| 79 |
radius = random.uniform(rng_inputs[1], minval=bds[0], maxval=bds[1])
|
| 80 |
-
theta = random.uniform(rng_inputs[1], minval
|
| 81 |
-
phi = random.uniform(rng_inputs[1], minval=0, maxval=
|
| 82 |
return pose_spherical(radius, theta, phi)
|
| 83 |
|
| 84 |
-
|
| 85 |
def preprocess_for_CLIP(image):
|
| 86 |
"""
|
| 87 |
jax-based preprocessing for CLIP
|
|
@@ -89,14 +99,12 @@ def preprocess_for_CLIP(image):
|
|
| 89 |
return [B, 3, 224, 224]: pre-processed image for CLIP
|
| 90 |
"""
|
| 91 |
B, D, H, W = image.shape
|
| 92 |
-
image = jax.image.resize(image, (B, D, 224, 224), 'bicubic') # assume that images have rectangle shape.
|
| 93 |
mean = jnp.array([0.48145466, 0.4578275, 0.40821073]).reshape(1, 3, 1, 1)
|
| 94 |
std = jnp.array([0.26862954, 0.26130258, 0.27577711]).reshape(1, 3, 1, 1)
|
|
|
|
| 95 |
image = (image - mean.astype(image.dtype)) / std.astype(image.dtype)
|
| 96 |
return image
|
| 97 |
|
| 98 |
-
|
| 99 |
-
# TODO @Alex: VisionModel v.s. original CLIP? (differ by a projection matrix)
|
| 100 |
def init_CLIP(dtype: str, model_name: Optional[str]) -> FlaxCLIPModel:
|
| 101 |
if dtype == 'float16':
|
| 102 |
dtype = jnp.float16
|
|
@@ -108,27 +116,3 @@ def init_CLIP(dtype: str, model_name: Optional[str]) -> FlaxCLIPModel:
|
|
| 108 |
if model_name is None:
|
| 109 |
model_name = 'openai/clip-vit-base-patch32'
|
| 110 |
return FlaxCLIPModel.from_pretrained(model_name, dtype=dtype)
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
# def SC_loss(rng_inputs, model, params, bds, rays, N_samples, target_emb, CLIP_model, l):
|
| 114 |
-
# """
|
| 115 |
-
# target_emb [1, D]: pre-computed target embedding vector \phi(I)
|
| 116 |
-
# source_img [1, 3, H, W]: source image \hat{I}
|
| 117 |
-
# l: loss weight lambda
|
| 118 |
-
# return: SC_loss
|
| 119 |
-
# """
|
| 120 |
-
# # _,H,W,D = rays.shape
|
| 121 |
-
# rng_inputs, model, params, bds, rays, N_samples, target_emb, CLIP_model, l = my_policy.cast_to_compute(
|
| 122 |
-
# (rng_inputs, model, params, bds, rays, N_samples, target_emb, CLIP_model, l))
|
| 123 |
-
# _, H, W, _ = rays.shape
|
| 124 |
-
# source_img = jnp.clip(render_fn(rng_inputs, model, params, None,
|
| 125 |
-
# np.reshape(rays, (2, -1, 3)),
|
| 126 |
-
# bds[0], bds[1], 1, rand=False),
|
| 127 |
-
# 0, 1)
|
| 128 |
-
# # source_img = np.clip(render_rays(rng_inputs, model, params, None, np.reshape(rays, (2, -1, 3)), bds[0], bds[1], 1, rand=False), 0, 1)
|
| 129 |
-
# source_img = np.reshape(source_img, [1, H, W, 3]).transpose(0, 3, 1, 2)
|
| 130 |
-
# source_img = preprocess_for_CLIP(source_img)
|
| 131 |
-
# source_emb = CLIP_model.get_image_features(pixel_values=source_img)
|
| 132 |
-
# source_emb /= np.linalg.norm(source_emb, axis=-1, keepdims=True)
|
| 133 |
-
# return l/2 * (np.sum((source_emb - target_emb) ** 2) / source_emb.shape[0])
|
| 134 |
-
|
|
|
|
| 9 |
import numpy as np
|
| 10 |
from transformers import FlaxCLIPModel
|
| 11 |
|
| 12 |
+
from nerf import utils
|
| 13 |
+
|
| 14 |
FLAGS = flags.FLAGS
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
@partial(jax.jit, static_argnums=[0])
|
| 17 |
+
def semantic_loss(clip_model, src_image, target_embedding):
|
| 18 |
+
src_image = utils.unshard(src_image)
|
| 19 |
+
w = int(math.sqrt(src_image.size//3))
|
| 20 |
+
src_image = src_image.reshape([w, w, 3])
|
| 21 |
+
|
| 22 |
+
src_embedding = clip_model.get_image_features(pixel_values=preprocess_for_CLIP(jnp.expand_dims(src_image,0).transpose(0, 3, 1, 2)))
|
| 23 |
+
src_embedding /= jnp.linalg.norm(src_embedding, axis=-1, keepdims=True)
|
| 24 |
+
src_embedding = jnp.array(src_embedding)
|
| 25 |
+
sc_loss = 0.5 * jnp.sum((src_embedding - target_embedding) ** 2) / src_embedding.shape[0]
|
| 26 |
+
return sc_loss, src_image
|
| 27 |
+
|
| 28 |
+
def semantic_step_multi(render_pfn, clip_model, rng, state, batch, lr):
|
| 29 |
+
random_rays = jax.tree_map(lambda x: utils.shard(x).astype(jnp.float16), batch["random_rays"])
|
| 30 |
+
target_embedding = batch["embedding"].astype(jnp.float16)
|
| 31 |
+
rng, key_0, key_1 = random.split(rng,3)
|
| 32 |
+
|
| 33 |
+
def loss_fn(variables):
|
| 34 |
+
src_image = render_pfn(variables, key_0, key_1, random_rays)
|
| 35 |
+
sc_loss, src_image = semantic_loss(clip_model, src_image, target_embedding)
|
| 36 |
+
return sc_loss * FLAGS.sc_loss_mult, src_image
|
| 37 |
+
(sc_loss, src_image), grad = jax.value_and_grad(loss_fn, has_aux = True)(jax.device_get(jax.tree_map(lambda x:x[0].astype(jnp.float16), state)).optimizer.target)
|
| 38 |
+
return sc_loss, grad, src_image
|
| 39 |
|
| 40 |
@partial(jax.jit, static_argnums=[0, 1])
|
| 41 |
+
def semantic_step_single(model, clip_model, rng, state, batch, lr):
|
| 42 |
# the batch is without shard
|
| 43 |
random_rays = batch["random_rays"]
|
|
|
|
| 44 |
rng, key_0, key_1 = random.split(rng,3)
|
| 45 |
|
| 46 |
def semantic_loss(variables):
|
| 47 |
+
src_image = model.apply(variables, key_0, key_1, random_rays, False, rgb_only = True)
|
|
|
|
|
|
|
|
|
|
| 48 |
# reshape flat pixel to an image (assume 3 channels & square shape)
|
| 49 |
w = int(math.sqrt(src_image.shape[0]))
|
| 50 |
+
src_image = src_image.reshape([w, w, 3])
|
| 51 |
+
src_embedding = clip_model.get_image_features(pixel_values=preprocess_for_CLIP(jnp.expand_dims(src_image,0).transpose(0, 3, 1, 2)))
|
|
|
|
| 52 |
src_embedding /= jnp.linalg.norm(src_embedding, axis=-1, keepdims=True)
|
| 53 |
src_embedding = jnp.array(src_embedding)
|
| 54 |
target_embedding = batch["embedding"]
|
| 55 |
+
sc_loss = 0.5 * jnp.sum((src_embedding - target_embedding) ** 2) / src_embedding.shape[0]
|
| 56 |
+
return sc_loss * FLAGS.sc_loss_mult, src_image
|
| 57 |
+
(sc_loss, src_image), grad = jax.value_and_grad(semantic_loss, has_aux = True)(jax.device_get(jax.tree_map(lambda x:x[0], state)).optimizer.target)
|
| 58 |
+
return sc_loss, grad, src_image
|
|
|
|
| 59 |
|
| 60 |
def trans_t(t):
|
| 61 |
return jnp.array([
|
|
|
|
| 64 |
[0, 0, 1, t],
|
| 65 |
[0, 0, 0, 1]], dtype=jnp.float32)
|
| 66 |
|
|
|
|
| 67 |
def rot_phi(phi):
|
| 68 |
return jnp.array([
|
| 69 |
[1, 0, 0, 0],
|
| 70 |
+
[0, jnp.cos(phi), jnp.sin(phi), 0],
|
| 71 |
+
[0,-jnp.sin(phi), jnp.cos(phi), 0],
|
| 72 |
[0, 0, 0, 1]], dtype=jnp.float32)
|
| 73 |
|
|
|
|
| 74 |
def rot_theta(th):
|
| 75 |
return jnp.array([
|
| 76 |
+
[jnp.cos(th), 0,-jnp.sin(th), 0],
|
| 77 |
[0, 1, 0, 0],
|
| 78 |
+
[jnp.sin(th), 0, jnp.cos(th), 0],
|
| 79 |
[0, 0, 0, 1]], dtype=jnp.float32)
|
| 80 |
|
| 81 |
+
def pose_spherical(radius, theta, phi):
|
|
|
|
| 82 |
c2w = trans_t(radius)
|
| 83 |
+
c2w = rot_phi(phi) @ c2w
|
| 84 |
+
c2w = rot_theta(theta) @ c2w
|
| 85 |
c2w = jnp.array([[-1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]) @ c2w
|
| 86 |
return c2w
|
| 87 |
|
|
|
|
| 88 |
def random_pose(rng, bds):
|
| 89 |
rng, *rng_inputs = jax.random.split(rng, 3)
|
| 90 |
radius = random.uniform(rng_inputs[1], minval=bds[0], maxval=bds[1])
|
| 91 |
+
theta = random.uniform(rng_inputs[1], minval=-jnp.pi, maxval=jnp.pi)
|
| 92 |
+
phi = random.uniform(rng_inputs[1], minval=0, maxval=jnp.pi/2)
|
| 93 |
return pose_spherical(radius, theta, phi)
|
| 94 |
|
|
|
|
| 95 |
def preprocess_for_CLIP(image):
|
| 96 |
"""
|
| 97 |
jax-based preprocessing for CLIP
|
|
|
|
| 99 |
return [B, 3, 224, 224]: pre-processed image for CLIP
|
| 100 |
"""
|
| 101 |
B, D, H, W = image.shape
|
|
|
|
| 102 |
mean = jnp.array([0.48145466, 0.4578275, 0.40821073]).reshape(1, 3, 1, 1)
|
| 103 |
std = jnp.array([0.26862954, 0.26130258, 0.27577711]).reshape(1, 3, 1, 1)
|
| 104 |
+
image = jax.image.resize(image, (B, D, 224, 224), 'bicubic') # assume that images have rectangle shape.
|
| 105 |
image = (image - mean.astype(image.dtype)) / std.astype(image.dtype)
|
| 106 |
return image
|
| 107 |
|
|
|
|
|
|
|
| 108 |
def init_CLIP(dtype: str, model_name: Optional[str]) -> FlaxCLIPModel:
|
| 109 |
if dtype == 'float16':
|
| 110 |
dtype = jnp.float16
|
|
|
|
| 116 |
if model_name is None:
|
| 117 |
model_name = 'openai/clip-vit-base-patch32'
|
| 118 |
return FlaxCLIPModel.from_pretrained(model_name, dtype=dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|