Spaces:
Runtime error
Runtime error
Commit
·
6936744
1
Parent(s):
80225b5
Move examples to another app
Browse files- app.py +1 -0
- apps/article.py +0 -207
- apps/examples.py +210 -0
app.py
CHANGED
|
@@ -25,6 +25,7 @@ def main():
|
|
| 25 |
app.add_app("Article", article.app)
|
| 26 |
app.add_app("Visual Question Answering", vqa.app)
|
| 27 |
app.add_app("Mask Filling", mlm.app)
|
|
|
|
| 28 |
app.run()
|
| 29 |
state.sync()
|
| 30 |
|
|
|
|
| 25 |
app.add_app("Article", article.app)
|
| 26 |
app.add_app("Visual Question Answering", vqa.app)
|
| 27 |
app.add_app("Mask Filling", mlm.app)
|
| 28 |
+
app.add_app("Examples", mlm.app)
|
| 29 |
app.run()
|
| 30 |
state.sync()
|
| 31 |
|
apps/article.py
CHANGED
|
@@ -66,211 +66,4 @@ def app(state=None):
|
|
| 66 |
|
| 67 |
toc.header("Acknowledgements")
|
| 68 |
st.write(read_markdown("acknowledgements.md"))
|
| 69 |
-
|
| 70 |
-
toc.header("VQA Examples")
|
| 71 |
-
toc.subheader("Color Questions")
|
| 72 |
-
col1, col2, col3 = st.beta_columns([1,1,1])
|
| 73 |
-
|
| 74 |
-
col1.image("./sections/examples/men_riding_horses.jpeg", use_column_width="auto", width=300)
|
| 75 |
-
col1.write("**Custom Question**: What color are the horses?")
|
| 76 |
-
col1.write("**Predicted Answer**: brown✅")
|
| 77 |
-
|
| 78 |
-
col2.image("./sections/examples/cat_color.jpeg", use_column_width="auto", width=300)
|
| 79 |
-
col2.write("**Custom Question**: What color is the cat?")
|
| 80 |
-
col2.write("**Predicted Answer**: white✅")
|
| 81 |
-
|
| 82 |
-
col3.image("./sections/examples/men_happy.jpeg", use_column_width="auto", width=300)
|
| 83 |
-
col3.write("**Custom Question**: What color is the man's jacket?")
|
| 84 |
-
col3.write("**Predicted Answer**: black⚫")
|
| 85 |
-
|
| 86 |
-
col1.image("./sections/examples/car_color.jpeg", use_column_width="auto", width=300)
|
| 87 |
-
col1.write("**Actual Question**: What color is the car?")
|
| 88 |
-
col1.write("**Predicted Answer**: blue❎")
|
| 89 |
-
|
| 90 |
-
col2.image("./sections/examples/coat_color.jpeg", use_column_width="auto", width=300)
|
| 91 |
-
col2.write("**Actual Question**: What color is this person's coat?")
|
| 92 |
-
col2.write("**Predicted Answer**: blue✅")
|
| 93 |
-
|
| 94 |
-
toc.subheader("Counting Questions")
|
| 95 |
-
|
| 96 |
-
col1, col2, col3 = st.beta_columns([1,1, 1])
|
| 97 |
-
|
| 98 |
-
col1.image("./sections/examples/giraffe_zebra.jpeg", use_column_width="auto", width=300)
|
| 99 |
-
col1.write("**Actual Question**: How many zebras are there?")
|
| 100 |
-
col1.write("**Predicted Answer**: 0❎")
|
| 101 |
-
|
| 102 |
-
col2.image("./sections/examples/giraffe_zebra.jpeg", use_column_width="auto", width=300)
|
| 103 |
-
col2.write("**Custom Question**: How many giraffes are there?")
|
| 104 |
-
col2.write("**Predicted Answer**: 2❎")
|
| 105 |
-
|
| 106 |
-
col3.image("./sections/examples/teddy.jpeg", use_column_width="auto", width=300)
|
| 107 |
-
col3.write("**Custom Question**: How many teddy bears are present in the image?")
|
| 108 |
-
col3.write("**Predicted Answer**: 3✅")
|
| 109 |
-
|
| 110 |
-
col1.image("./sections/examples/candle_count.jpeg", use_column_width="auto", width=300)
|
| 111 |
-
col1.write("**Actual Question**: ¿Cuantas velas hay en el cupcake?")
|
| 112 |
-
col1.write("**English Translation**: How many candles are in the cupcake?")
|
| 113 |
-
col1.write("**Predicted Answer**: 0❎")
|
| 114 |
-
|
| 115 |
-
col1.image("./sections/examples/people_picture.jpeg", use_column_width="auto", width=300)
|
| 116 |
-
col1.write("**Actual Question**: ¿A cuánta gente le están tomando una foto?")
|
| 117 |
-
col1.write("**English Translation**: How many people are you taking a picture of?")
|
| 118 |
-
col1.write("**Predicted Answer**: 10❎")
|
| 119 |
-
|
| 120 |
-
toc.subheader("Size/Shape Questions")
|
| 121 |
-
col1, col2, col3 = st.beta_columns([1,1,1])
|
| 122 |
-
col1.image("./sections/examples/vase.jpeg", use_column_width="auto", width=300)
|
| 123 |
-
col1.write("**Actual Question**: What shape is the vase? ")
|
| 124 |
-
col1.write("**Predicted Answer**: round✅")
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
toc.subheader("Yes/No Questions")
|
| 128 |
-
col1, col2, col3 = st.beta_columns([1,1,1])
|
| 129 |
-
|
| 130 |
-
col1.image("./sections/examples/teddy.jpeg", use_column_width="auto", width=300)
|
| 131 |
-
col1.write("**Actual Question**: Sind das drei Teddybären?")
|
| 132 |
-
col1.write("**English Translation**: Are those teddy bears?")
|
| 133 |
-
col1.write("**Predicted Answer**: Ja (yes)✅")
|
| 134 |
-
|
| 135 |
-
col2.image("./sections/examples/winter.jpeg", use_column_width="auto", width=300)
|
| 136 |
-
col2.write("**Actual Question**: ¿Se lo tomaron en invierno?")
|
| 137 |
-
col2.write("**English Translation**: Did they take it in winter?")
|
| 138 |
-
col2.write("**Predicted Answer**: si (yes)✅")
|
| 139 |
-
|
| 140 |
-
col3.image("./sections/examples/clock.jpeg", use_column_width="auto", width=300)
|
| 141 |
-
col3.write("**Actual Question**: Is the clock ornate? ")
|
| 142 |
-
col3.write("**Predicted Answer**: yes✅")
|
| 143 |
-
|
| 144 |
-
col1.image("./sections/examples/decorated_building.jpeg", use_column_width="auto", width=300)
|
| 145 |
-
col1.write("**Actual Question**: Ist das Gebäude orniert?")
|
| 146 |
-
col1.write("**English Translation**: Is the building decorated?")
|
| 147 |
-
col1.write("**Predicted Answer**: Ja (yes)✅")
|
| 148 |
-
|
| 149 |
-
col2.image("./sections/examples/commuter_train.jpeg", use_column_width="auto", width=300)
|
| 150 |
-
col2.write("**Actual Question**: Ist das ein Pendler-Zug?")
|
| 151 |
-
col2.write("**English Translation**: Is that a commuter train?")
|
| 152 |
-
col2.write("**Predicted Answer**: Ja (yes)❎")
|
| 153 |
-
|
| 154 |
-
col3.image("./sections/examples/is_in_a_restaurant.jpeg", use_column_width="auto", width=300)
|
| 155 |
-
col3.write("**Actual Question**: Elle est dans un restaurant?")
|
| 156 |
-
col3.write("**English Translation**: Is she in a restaurant?")
|
| 157 |
-
col3.write("**Predicted Answer**: Oui (yes)❎")
|
| 158 |
-
|
| 159 |
-
col1.image("./sections/examples/giraffe_eyes.jpeg", use_column_width="auto", width=300)
|
| 160 |
-
col1.write("**Actual Question**: Est-ce que l'œil de la girafe est fermé?")
|
| 161 |
-
col1.write("**English Translation**: Are the giraffe's eyes closed?")
|
| 162 |
-
col1.write("**Predicted Answer**: Oui (yes)❎")
|
| 163 |
-
|
| 164 |
-
toc.subheader("Negatives Test")
|
| 165 |
-
col1, col2, col3 = st.beta_columns([1,1,1])
|
| 166 |
-
col1.image("./sections/examples/men_happy.jpeg", use_column_width="auto", width=300)
|
| 167 |
-
|
| 168 |
-
col2.write("**Actual Question**: Is the man happy?")
|
| 169 |
-
col2.write("**Predicted Answer**: Yes✅")
|
| 170 |
-
|
| 171 |
-
col3.write("**Actual Question**: Is the man not happy?")
|
| 172 |
-
col3.write("**Predicted Answer**: Yes❎")
|
| 173 |
-
|
| 174 |
-
col2.write("**Actual Question**: Is the man sad?")
|
| 175 |
-
col2.write("**Predicted Answer**: No✅")
|
| 176 |
-
|
| 177 |
-
col3.write("**Actual Question**: Is the man not sad?")
|
| 178 |
-
col3.write("**Predicted Answer**: No❎")
|
| 179 |
-
|
| 180 |
-
col2.write("**Actual Question**: Is the man unhappy?")
|
| 181 |
-
col2.write("**Predicted Answer**: No✅")
|
| 182 |
-
|
| 183 |
-
col3.write("**Actual Question**: Is the man not unhappy?")
|
| 184 |
-
col3.write("**Predicted Answer**: No❎")
|
| 185 |
-
|
| 186 |
-
toc.subheader("Multilinguality Test")
|
| 187 |
-
|
| 188 |
-
toc.subsubheader("Color Question")
|
| 189 |
-
col1, col2, col3 = st.beta_columns([1,1,1])
|
| 190 |
-
col1.image("./sections/examples/truck_color.jpeg", use_column_width="auto", width=300)
|
| 191 |
-
|
| 192 |
-
col2.write("**Actual Question**: What color is the building?")
|
| 193 |
-
col2.write("**Predicted Answer**: red✅")
|
| 194 |
-
|
| 195 |
-
col3.write("**Actual Question**: Welche Farbe hat das Gebäude?")
|
| 196 |
-
col3.write("**English Translation**: What color is the building?")
|
| 197 |
-
col3.write("**Predicted Answer**: rot (red)✅")
|
| 198 |
-
|
| 199 |
-
col2.write("**Actual Question**: ¿De qué color es el edificio?")
|
| 200 |
-
col2.write("**English Translation**: What color is the building?")
|
| 201 |
-
col2.write("**Predicted Answer**: rojo (red)✅")
|
| 202 |
-
|
| 203 |
-
col3.write("**Actual Question**: De quelle couleur est le bâtiment ?")
|
| 204 |
-
col3.write("**English Translation**: What color is the building?")
|
| 205 |
-
col3.write("**Predicted Answer**: rouge (red)✅")
|
| 206 |
-
|
| 207 |
-
toc.subsubheader("Counting Question")
|
| 208 |
-
col1, col2, col3 = st.beta_columns([1,1,1])
|
| 209 |
-
col1.image("./sections/examples/bear.jpeg", use_column_width="auto", width=300)
|
| 210 |
-
|
| 211 |
-
col2.write("**Actual Question**: How many bears do you see?")
|
| 212 |
-
col2.write("**Predicted Answer**: 1✅")
|
| 213 |
-
|
| 214 |
-
col3.write("**Actual Question**: Wie viele Bären siehst du?")
|
| 215 |
-
col3.write("**English Translation**: How many bears do you see?")
|
| 216 |
-
col3.write("**Predicted Answer**: 1✅")
|
| 217 |
-
|
| 218 |
-
col2.write("**Actual Question**: ¿Cuántos osos ves?")
|
| 219 |
-
col2.write("**English Translation**: How many bears do you see?")
|
| 220 |
-
col2.write("**Predicted Answer**: 1✅")
|
| 221 |
-
|
| 222 |
-
col3.write("**Actual Question**: Combien d'ours voyez-vous ?")
|
| 223 |
-
col3.write("**English Translation**: How many bears do you see?")
|
| 224 |
-
col3.write("**Predicted Answer**: 1✅")
|
| 225 |
-
|
| 226 |
-
toc.subsubheader("Misc Question")
|
| 227 |
-
col1, col2, col3 = st.beta_columns([1,1,1])
|
| 228 |
-
col1.image("./sections/examples/bench.jpeg", use_column_width="auto", width=300)
|
| 229 |
-
|
| 230 |
-
col2.write("**Actual Question**: Where is the bench?")
|
| 231 |
-
col2.write("**Predicted Answer**: field✅")
|
| 232 |
-
|
| 233 |
-
col3.write("**Actual Question**: Où est le banc ?")
|
| 234 |
-
col3.write("**English Translation**: Where is the bench?")
|
| 235 |
-
col3.write("**Predicted Answer**: domaine (field)✅")
|
| 236 |
-
|
| 237 |
-
col2.write("**Actual Question**: ¿Dónde está el banco?")
|
| 238 |
-
col2.write("**English Translation**: Where is the bench?")
|
| 239 |
-
col2.write("**Predicted Answer**: campo (field)✅")
|
| 240 |
-
|
| 241 |
-
col3.write("**Actual Question**: Wo ist die Bank?")
|
| 242 |
-
col3.write("**English Translation**: Where is the bench?")
|
| 243 |
-
col3.write("**Predicted Answer**: Feld (field)✅")
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
toc.subheader("Misc Questions")
|
| 247 |
-
col1, col2, col3 = st.beta_columns([1,1,1])
|
| 248 |
-
|
| 249 |
-
col1.image("./sections/examples/tennis.jpeg", use_column_width="auto", width=300)
|
| 250 |
-
col1.write("**Actual Question**: ¿Qué clase de juego está viendo la multitud?")
|
| 251 |
-
col1.write("**English Translation**: What kind of game is the crowd watching?")
|
| 252 |
-
col1.write("**Predicted Answer**: tenis (tennis)✅")
|
| 253 |
-
|
| 254 |
-
col2.image("./sections/examples/men_body_suits.jpeg", use_column_width="auto", width=300)
|
| 255 |
-
col2.write("**Custom Question**: What are the men wearing?")
|
| 256 |
-
col2.write("**Predicted Answer**: wetsuits✅")
|
| 257 |
-
|
| 258 |
-
col3.image("./sections/examples/bathroom.jpeg", use_column_width="auto", width=300)
|
| 259 |
-
col3.write("**Actual Question**: ¿A qué habitación perteneces?")
|
| 260 |
-
col3.write("**English Translation**: What room do you belong to?")
|
| 261 |
-
col3.write("**Predicted Answer**: bano (bathroom)✅")
|
| 262 |
-
|
| 263 |
-
col1.image("./sections/examples/men_riding_horses.jpeg", use_column_width="auto", width=300)
|
| 264 |
-
col1.write("**Custom Question**: What are the men riding?")
|
| 265 |
-
col1.write("**Predicted Answer**: horses✅")
|
| 266 |
-
|
| 267 |
-
col2.image("./sections/examples/inside_outside.jpeg", use_column_width="auto", width=300)
|
| 268 |
-
col2.write("**Actual Question**: Was this taken inside or outside?")
|
| 269 |
-
col2.write("**Predicted Answer**: inside✅")
|
| 270 |
-
|
| 271 |
-
col3.image("./sections/examples/dog_looking_at.jpeg", use_column_width="auto", width=300)
|
| 272 |
-
col3.write("**Actual Question**: Was guckt der Hund denn so?")
|
| 273 |
-
col3.write("**English Translation**: What is the dog looking at?")
|
| 274 |
-
col3.write("**Predicted Answer**: Frisbeescheibe (frisbee)❎")
|
| 275 |
-
|
| 276 |
toc.generate()
|
|
|
|
| 66 |
|
| 67 |
toc.header("Acknowledgements")
|
| 68 |
st.write(read_markdown("acknowledgements.md"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
toc.generate()
|
apps/examples.py
ADDED
|
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from .utils import Toc
|
| 3 |
+
def app(state=None):
|
| 4 |
+
toc = Toc()
|
| 5 |
+
|
| 6 |
+
toc.header("VQA Examples")
|
| 7 |
+
toc.subheader("Color Questions")
|
| 8 |
+
col1, col2, col3 = st.beta_columns([1,1,1])
|
| 9 |
+
|
| 10 |
+
col1.image("./sections/examples/men_riding_horses.jpeg", use_column_width="auto", width=300)
|
| 11 |
+
col1.write("**Custom Question**: What color are the horses?")
|
| 12 |
+
col1.write("**Predicted Answer**: brown✅")
|
| 13 |
+
|
| 14 |
+
col2.image("./sections/examples/cat_color.jpeg", use_column_width="auto", width=300)
|
| 15 |
+
col2.write("**Custom Question**: What color is the cat?")
|
| 16 |
+
col2.write("**Predicted Answer**: white✅")
|
| 17 |
+
|
| 18 |
+
col3.image("./sections/examples/men_happy.jpeg", use_column_width="auto", width=300)
|
| 19 |
+
col3.write("**Custom Question**: What color is the man's jacket?")
|
| 20 |
+
col3.write("**Predicted Answer**: black⚫")
|
| 21 |
+
|
| 22 |
+
col1.image("./sections/examples/car_color.jpeg", use_column_width="auto", width=300)
|
| 23 |
+
col1.write("**Actual Question**: What color is the car?")
|
| 24 |
+
col1.write("**Predicted Answer**: blue❎")
|
| 25 |
+
|
| 26 |
+
col2.image("./sections/examples/coat_color.jpeg", use_column_width="auto", width=300)
|
| 27 |
+
col2.write("**Actual Question**: What color is this person's coat?")
|
| 28 |
+
col2.write("**Predicted Answer**: blue✅")
|
| 29 |
+
|
| 30 |
+
toc.subheader("Counting Questions")
|
| 31 |
+
|
| 32 |
+
col1, col2, col3 = st.beta_columns([1,1, 1])
|
| 33 |
+
|
| 34 |
+
col1.image("./sections/examples/giraffe_zebra.jpeg", use_column_width="auto", width=300)
|
| 35 |
+
col1.write("**Actual Question**: How many zebras are there?")
|
| 36 |
+
col1.write("**Predicted Answer**: 0❎")
|
| 37 |
+
|
| 38 |
+
col2.image("./sections/examples/giraffe_zebra.jpeg", use_column_width="auto", width=300)
|
| 39 |
+
col2.write("**Custom Question**: How many giraffes are there?")
|
| 40 |
+
col2.write("**Predicted Answer**: 2❎")
|
| 41 |
+
|
| 42 |
+
col3.image("./sections/examples/teddy.jpeg", use_column_width="auto", width=300)
|
| 43 |
+
col3.write("**Custom Question**: How many teddy bears are present in the image?")
|
| 44 |
+
col3.write("**Predicted Answer**: 3✅")
|
| 45 |
+
|
| 46 |
+
col1.image("./sections/examples/candle_count.jpeg", use_column_width="auto", width=300)
|
| 47 |
+
col1.write("**Actual Question**: ¿Cuantas velas hay en el cupcake?")
|
| 48 |
+
col1.write("**English Translation**: How many candles are in the cupcake?")
|
| 49 |
+
col1.write("**Predicted Answer**: 0❎")
|
| 50 |
+
|
| 51 |
+
col1.image("./sections/examples/people_picture.jpeg", use_column_width="auto", width=300)
|
| 52 |
+
col1.write("**Actual Question**: ¿A cuánta gente le están tomando una foto?")
|
| 53 |
+
col1.write("**English Translation**: How many people are you taking a picture of?")
|
| 54 |
+
col1.write("**Predicted Answer**: 10❎")
|
| 55 |
+
|
| 56 |
+
toc.subheader("Size/Shape Questions")
|
| 57 |
+
col1, col2, col3 = st.beta_columns([1,1,1])
|
| 58 |
+
col1.image("./sections/examples/vase.jpeg", use_column_width="auto", width=300)
|
| 59 |
+
col1.write("**Actual Question**: What shape is the vase? ")
|
| 60 |
+
col1.write("**Predicted Answer**: round✅")
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
toc.subheader("Yes/No Questions")
|
| 64 |
+
col1, col2, col3 = st.beta_columns([1,1,1])
|
| 65 |
+
|
| 66 |
+
col1.image("./sections/examples/teddy.jpeg", use_column_width="auto", width=300)
|
| 67 |
+
col1.write("**Actual Question**: Sind das drei Teddybären?")
|
| 68 |
+
col1.write("**English Translation**: Are those teddy bears?")
|
| 69 |
+
col1.write("**Predicted Answer**: Ja (yes)✅")
|
| 70 |
+
|
| 71 |
+
col2.image("./sections/examples/winter.jpeg", use_column_width="auto", width=300)
|
| 72 |
+
col2.write("**Actual Question**: ¿Se lo tomaron en invierno?")
|
| 73 |
+
col2.write("**English Translation**: Did they take it in winter?")
|
| 74 |
+
col2.write("**Predicted Answer**: si (yes)✅")
|
| 75 |
+
|
| 76 |
+
col3.image("./sections/examples/clock.jpeg", use_column_width="auto", width=300)
|
| 77 |
+
col3.write("**Actual Question**: Is the clock ornate? ")
|
| 78 |
+
col3.write("**Predicted Answer**: yes✅")
|
| 79 |
+
|
| 80 |
+
col1.image("./sections/examples/decorated_building.jpeg", use_column_width="auto", width=300)
|
| 81 |
+
col1.write("**Actual Question**: Ist das Gebäude orniert?")
|
| 82 |
+
col1.write("**English Translation**: Is the building decorated?")
|
| 83 |
+
col1.write("**Predicted Answer**: Ja (yes)✅")
|
| 84 |
+
|
| 85 |
+
col2.image("./sections/examples/commuter_train.jpeg", use_column_width="auto", width=300)
|
| 86 |
+
col2.write("**Actual Question**: Ist das ein Pendler-Zug?")
|
| 87 |
+
col2.write("**English Translation**: Is that a commuter train?")
|
| 88 |
+
col2.write("**Predicted Answer**: Ja (yes)❎")
|
| 89 |
+
|
| 90 |
+
col3.image("./sections/examples/is_in_a_restaurant.jpeg", use_column_width="auto", width=300)
|
| 91 |
+
col3.write("**Actual Question**: Elle est dans un restaurant?")
|
| 92 |
+
col3.write("**English Translation**: Is she in a restaurant?")
|
| 93 |
+
col3.write("**Predicted Answer**: Oui (yes)❎")
|
| 94 |
+
|
| 95 |
+
col1.image("./sections/examples/giraffe_eyes.jpeg", use_column_width="auto", width=300)
|
| 96 |
+
col1.write("**Actual Question**: Est-ce que l'œil de la girafe est fermé?")
|
| 97 |
+
col1.write("**English Translation**: Are the giraffe's eyes closed?")
|
| 98 |
+
col1.write("**Predicted Answer**: Oui (yes)❎")
|
| 99 |
+
|
| 100 |
+
toc.subheader("Negatives Test")
|
| 101 |
+
col1, col2, col3 = st.beta_columns([1,1,1])
|
| 102 |
+
col1.image("./sections/examples/men_happy.jpeg", use_column_width="auto", width=300)
|
| 103 |
+
|
| 104 |
+
col2.write("**Actual Question**: Is the man happy?")
|
| 105 |
+
col2.write("**Predicted Answer**: Yes✅")
|
| 106 |
+
|
| 107 |
+
col3.write("**Actual Question**: Is the man not happy?")
|
| 108 |
+
col3.write("**Predicted Answer**: Yes❎")
|
| 109 |
+
|
| 110 |
+
col2.write("**Actual Question**: Is the man sad?")
|
| 111 |
+
col2.write("**Predicted Answer**: No✅")
|
| 112 |
+
|
| 113 |
+
col3.write("**Actual Question**: Is the man not sad?")
|
| 114 |
+
col3.write("**Predicted Answer**: No❎")
|
| 115 |
+
|
| 116 |
+
col2.write("**Actual Question**: Is the man unhappy?")
|
| 117 |
+
col2.write("**Predicted Answer**: No✅")
|
| 118 |
+
|
| 119 |
+
col3.write("**Actual Question**: Is the man not unhappy?")
|
| 120 |
+
col3.write("**Predicted Answer**: No❎")
|
| 121 |
+
|
| 122 |
+
toc.subheader("Multilinguality Test")
|
| 123 |
+
|
| 124 |
+
toc.subsubheader("Color Question")
|
| 125 |
+
col1, col2, col3 = st.beta_columns([1,1,1])
|
| 126 |
+
col1.image("./sections/examples/truck_color.jpeg", use_column_width="auto", width=300)
|
| 127 |
+
|
| 128 |
+
col2.write("**Actual Question**: What color is the building?")
|
| 129 |
+
col2.write("**Predicted Answer**: red✅")
|
| 130 |
+
|
| 131 |
+
col3.write("**Actual Question**: Welche Farbe hat das Gebäude?")
|
| 132 |
+
col3.write("**English Translation**: What color is the building?")
|
| 133 |
+
col3.write("**Predicted Answer**: rot (red)✅")
|
| 134 |
+
|
| 135 |
+
col2.write("**Actual Question**: ¿De qué color es el edificio?")
|
| 136 |
+
col2.write("**English Translation**: What color is the building?")
|
| 137 |
+
col2.write("**Predicted Answer**: rojo (red)✅")
|
| 138 |
+
|
| 139 |
+
col3.write("**Actual Question**: De quelle couleur est le bâtiment ?")
|
| 140 |
+
col3.write("**English Translation**: What color is the building?")
|
| 141 |
+
col3.write("**Predicted Answer**: rouge (red)✅")
|
| 142 |
+
|
| 143 |
+
toc.subsubheader("Counting Question")
|
| 144 |
+
col1, col2, col3 = st.beta_columns([1,1,1])
|
| 145 |
+
col1.image("./sections/examples/bear.jpeg", use_column_width="auto", width=300)
|
| 146 |
+
|
| 147 |
+
col2.write("**Actual Question**: How many bears do you see?")
|
| 148 |
+
col2.write("**Predicted Answer**: 1✅")
|
| 149 |
+
|
| 150 |
+
col3.write("**Actual Question**: Wie viele Bären siehst du?")
|
| 151 |
+
col3.write("**English Translation**: How many bears do you see?")
|
| 152 |
+
col3.write("**Predicted Answer**: 1✅")
|
| 153 |
+
|
| 154 |
+
col2.write("**Actual Question**: ¿Cuántos osos ves?")
|
| 155 |
+
col2.write("**English Translation**: How many bears do you see?")
|
| 156 |
+
col2.write("**Predicted Answer**: 1✅")
|
| 157 |
+
|
| 158 |
+
col3.write("**Actual Question**: Combien d'ours voyez-vous ?")
|
| 159 |
+
col3.write("**English Translation**: How many bears do you see?")
|
| 160 |
+
col3.write("**Predicted Answer**: 1✅")
|
| 161 |
+
|
| 162 |
+
toc.subsubheader("Misc Question")
|
| 163 |
+
col1, col2, col3 = st.beta_columns([1,1,1])
|
| 164 |
+
col1.image("./sections/examples/bench.jpeg", use_column_width="auto", width=300)
|
| 165 |
+
|
| 166 |
+
col2.write("**Actual Question**: Where is the bench?")
|
| 167 |
+
col2.write("**Predicted Answer**: field✅")
|
| 168 |
+
|
| 169 |
+
col3.write("**Actual Question**: Où est le banc ?")
|
| 170 |
+
col3.write("**English Translation**: Where is the bench?")
|
| 171 |
+
col3.write("**Predicted Answer**: domaine (field)✅")
|
| 172 |
+
|
| 173 |
+
col2.write("**Actual Question**: ¿Dónde está el banco?")
|
| 174 |
+
col2.write("**English Translation**: Where is the bench?")
|
| 175 |
+
col2.write("**Predicted Answer**: campo (field)✅")
|
| 176 |
+
|
| 177 |
+
col3.write("**Actual Question**: Wo ist die Bank?")
|
| 178 |
+
col3.write("**English Translation**: Where is the bench?")
|
| 179 |
+
col3.write("**Predicted Answer**: Feld (field)✅")
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
toc.subheader("Misc Questions")
|
| 183 |
+
col1, col2, col3 = st.beta_columns([1,1,1])
|
| 184 |
+
|
| 185 |
+
col1.image("./sections/examples/tennis.jpeg", use_column_width="auto", width=300)
|
| 186 |
+
col1.write("**Actual Question**: ¿Qué clase de juego está viendo la multitud?")
|
| 187 |
+
col1.write("**English Translation**: What kind of game is the crowd watching?")
|
| 188 |
+
col1.write("**Predicted Answer**: tenis (tennis)✅")
|
| 189 |
+
|
| 190 |
+
col2.image("./sections/examples/men_body_suits.jpeg", use_column_width="auto", width=300)
|
| 191 |
+
col2.write("**Custom Question**: What are the men wearing?")
|
| 192 |
+
col2.write("**Predicted Answer**: wetsuits✅")
|
| 193 |
+
|
| 194 |
+
col3.image("./sections/examples/bathroom.jpeg", use_column_width="auto", width=300)
|
| 195 |
+
col3.write("**Actual Question**: ¿A qué habitación perteneces?")
|
| 196 |
+
col3.write("**English Translation**: What room do you belong to?")
|
| 197 |
+
col3.write("**Predicted Answer**: bano (bathroom)✅")
|
| 198 |
+
|
| 199 |
+
col1.image("./sections/examples/men_riding_horses.jpeg", use_column_width="auto", width=300)
|
| 200 |
+
col1.write("**Custom Question**: What are the men riding?")
|
| 201 |
+
col1.write("**Predicted Answer**: horses✅")
|
| 202 |
+
|
| 203 |
+
col2.image("./sections/examples/inside_outside.jpeg", use_column_width="auto", width=300)
|
| 204 |
+
col2.write("**Actual Question**: Was this taken inside or outside?")
|
| 205 |
+
col2.write("**Predicted Answer**: inside✅")
|
| 206 |
+
|
| 207 |
+
col3.image("./sections/examples/dog_looking_at.jpeg", use_column_width="auto", width=300)
|
| 208 |
+
col3.write("**Actual Question**: Was guckt der Hund denn so?")
|
| 209 |
+
col3.write("**English Translation**: What is the dog looking at?")
|
| 210 |
+
col3.write("**Predicted Answer**: Frisbeescheibe (frisbee)❎")
|