Spaces:
Running
Running
| #!/usr/bin/env python | |
| # coding: utf-8 | |
| # VQGAN-JAX - Encoding HowTo | |
| import numpy as np | |
| # For data loading | |
| import torch | |
| import torchvision.transforms.functional as TF | |
| from torch.utils.data import Dataset, DataLoader | |
| from torchvision.datasets.folder import default_loader | |
| from torchvision.transforms import InterpolationMode | |
| # For data saving | |
| from pathlib import Path | |
| import pandas as pd | |
| from tqdm import tqdm | |
| import jax | |
| from jax import pmap | |
| from vqgan_jax.modeling_flax_vqgan import VQModel | |
| ## Params and arguments | |
| image_list = '/sddata/dalle-mini/CC12M/10k.tsv' # List of paths containing images to encode | |
| output_tsv = 'output.tsv' # Encoded results | |
| batch_size = 64 | |
| num_workers = 4 # TPU v3-8s have 96 cores, so feel free to increase this number when necessary | |
| # Load model | |
| model = VQModel.from_pretrained("flax-community/vqgan_f16_16384") | |
| ## Data Loading. | |
| # Simple torch Dataset to load images from paths. | |
| # You can use your own pipeline instead. | |
| class ImageDataset(Dataset): | |
| def __init__(self, image_list_path: str, image_size: int, max_items=None): | |
| """ | |
| :param image_list_path: Path to a file containing a list of all images. We assume absolute paths for now. | |
| :param image_size: Image size. Source images will be resized and center-cropped. | |
| :max_items: Limit dataset size for debugging | |
| """ | |
| self.image_list = pd.read_csv(image_list_path, sep='\t', header=None) | |
| if max_items is not None: self.image_list = self.image_list[:max_items] | |
| self.image_size = image_size | |
| def __len__(self): | |
| return len(self.image_list) | |
| def _get_raw_image(self, i): | |
| image_path = Path(self.image_list.iloc[i][0]) | |
| return default_loader(image_path) | |
| def resize_image(self, image): | |
| s = min(image.size) | |
| r = self.image_size / s | |
| s = (round(r * image.size[1]), round(r * image.size[0])) | |
| image = TF.resize(image, s, interpolation=InterpolationMode.LANCZOS) | |
| image = TF.center_crop(image, output_size = 2 * [self.image_size]) | |
| image = np.expand_dims(np.array(image), axis=0) | |
| return image | |
| def __getitem__(self, i): | |
| image = self._get_raw_image(i) | |
| return self.resize_image(image) | |
| ## Encoding | |
| # Encoding function to be parallelized with `pmap` | |
| # Note: images have to be square | |
| def encode(model, batch): | |
| _, indices = model.encode(batch) | |
| return indices | |
| # Alternative: create a batch with num_tpus*batch_size and use `shard` to distribute. | |
| def superbatch_generator(dataloader, num_tpus): | |
| iter_loader = iter(dataloader) | |
| for batch in iter_loader: | |
| superbatch = [batch.squeeze(1)] | |
| try: | |
| for _ in range(num_tpus-1): | |
| batch = next(iter_loader) | |
| if batch is None: | |
| break | |
| # Skip incomplete last batch | |
| if batch.shape[0] == dataloader.batch_size: | |
| superbatch.append(batch.squeeze(1)) | |
| except StopIteration: | |
| pass | |
| superbatch = torch.stack(superbatch, axis=0) | |
| yield superbatch | |
| def encode_dataset(dataset, batch_size=32): | |
| dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers) | |
| superbatches = superbatch_generator(dataloader, num_tpus=jax.device_count()) | |
| num_tpus = jax.device_count() | |
| dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers) | |
| superbatches = superbatch_generator(dataloader, num_tpus=num_tpus) | |
| p_encoder = pmap(lambda batch: encode(model, batch)) | |
| # We save each superbatch to avoid reallocation of buffers as we process them. | |
| # We keep the file open to prevent excessive file seeks. | |
| with open(output_tsv, "w") as file: | |
| iterations = len(dataset) // (batch_size * num_tpus) | |
| for n in tqdm(range(iterations)): | |
| superbatch = next(superbatches) | |
| encoded = p_encoder(superbatch.numpy()) | |
| encoded = encoded.reshape(-1, encoded.shape[-1]) | |
| # Extract paths from the dataset, and save paths and encodings (as string) to disk | |
| start_index = n * batch_size * num_tpus | |
| end_index = (n+1) * batch_size * num_tpus | |
| paths = dataset.image_list[start_index:end_index][0].values | |
| encoded_as_string = list(map(lambda item: np.array2string(item, separator=',', max_line_width=50000, formatter={'int':lambda x: str(x)}), encoded)) | |
| batch_df = pd.DataFrame.from_dict({"image_file": paths, "encoding": encoded_as_string}) | |
| batch_df.to_csv(file, sep='\t', header=(n==0), index=None) | |
| dataset = ImageDataset(image_list, image_size=256) | |
| encoded_dataset = encode_dataset(dataset, batch_size=batch_size) | |