Spaces:
Build error
Build error
Trent
commited on
Commit
·
8e37dd1
1
Parent(s):
c6d1483
Embed.py implementation
Browse files- embed.py +26 -25
- requirements.txt +1 -0
embed.py
CHANGED
|
@@ -5,33 +5,41 @@ import os
|
|
| 5 |
from PIL import Image
|
| 6 |
|
| 7 |
from utils import load_model
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
|
| 10 |
def main(args):
|
| 11 |
root = args.image_path
|
| 12 |
files = list(os.listdir(root))
|
| 13 |
-
for
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
image_ids = []
|
| 17 |
model, processor = load_model(f"koclip/{model_name}")
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
features = model(**inputs).image_embeds
|
| 22 |
-
with open(os.path.join(args.out_path, f"{model_name}.tsv", "
|
| 23 |
writer = csv.writer(f, delimiter="\t")
|
| 24 |
for image_id, feature in zip(image_ids, features):
|
| 25 |
-
writer.writerow([image_id, ",".join(feature)])
|
| 26 |
-
images = []
|
| 27 |
-
image_ids = []
|
| 28 |
-
else:
|
| 29 |
-
file_ = files[counter]
|
| 30 |
-
image = Image.open(os.path.join(root, file_))
|
| 31 |
-
images.append(image)
|
| 32 |
-
image_ids.append(file_)
|
| 33 |
-
counter += 1
|
| 34 |
-
|
| 35 |
|
| 36 |
|
| 37 |
if __name__ == "__main__":
|
|
@@ -41,10 +49,3 @@ if __name__ == "__main__":
|
|
| 41 |
parser.add_argument("--out_path", default="features")
|
| 42 |
args = parser.parse_args()
|
| 43 |
main(args)
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
| 5 |
from PIL import Image
|
| 6 |
|
| 7 |
from utils import load_model
|
| 8 |
+
import jax.numpy as jnp
|
| 9 |
+
from jax import jit
|
| 10 |
+
|
| 11 |
+
from tqdm import tqdm
|
| 12 |
|
| 13 |
|
| 14 |
def main(args):
|
| 15 |
root = args.image_path
|
| 16 |
files = list(os.listdir(root))
|
| 17 |
+
for f in files:
|
| 18 |
+
assert(f[-4:] == ".jpg")
|
| 19 |
+
for model_name in ["koclip", "koclip-large"]:
|
|
|
|
| 20 |
model, processor = load_model(f"koclip/{model_name}")
|
| 21 |
+
with tqdm(total=len(files)) as pbar:
|
| 22 |
+
for counter in range(0, len(files), args.batch_size):
|
| 23 |
+
images = []
|
| 24 |
+
image_ids = []
|
| 25 |
+
for idx in range(counter, min(len(files), counter + args.batch_size)):
|
| 26 |
+
file_ = files[idx]
|
| 27 |
+
image = Image.open(os.path.join(root, file_)).convert('RGB')
|
| 28 |
+
images.append(image)
|
| 29 |
+
image_ids.append(file_)
|
| 30 |
+
|
| 31 |
+
pbar.update(args.batch_size)
|
| 32 |
+
try:
|
| 33 |
+
inputs = processor(text=[""], images=images, return_tensors="jax", padding=True)
|
| 34 |
+
except:
|
| 35 |
+
print(image_ids)
|
| 36 |
+
break
|
| 37 |
+
inputs['pixel_values'] = jnp.transpose(inputs['pixel_values'], axes=[0, 2, 3, 1])
|
| 38 |
features = model(**inputs).image_embeds
|
| 39 |
+
with open(os.path.join(args.out_path, f"{model_name}.tsv"), "a+") as f:
|
| 40 |
writer = csv.writer(f, delimiter="\t")
|
| 41 |
for image_id, feature in zip(image_ids, features):
|
| 42 |
+
writer.writerow([image_id, ",".join(map(lambda x: str(x), feature))])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
|
| 45 |
if __name__ == "__main__":
|
|
|
|
| 49 |
parser.add_argument("--out_path", default="features")
|
| 50 |
args = parser.parse_args()
|
| 51 |
main(args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -3,3 +3,4 @@ jaxlib
|
|
| 3 |
flax
|
| 4 |
transformers
|
| 5 |
streamlit
|
|
|
|
|
|
| 3 |
flax
|
| 4 |
transformers
|
| 5 |
streamlit
|
| 6 |
+
tqdm
|