Spaces:
Runtime error
Runtime error
Commit
·
668c729
1
Parent(s):
2c23735
weights and model
Browse files- ckpt/ckpt-17499/config.json +316 -0
- ckpt/ckpt-17499/flax_model.msgpack +3 -0
- ckpt/ckpt-17499/training_state.json +1 -0
- ckpt/ckpt-22499/config.json +316 -0
- ckpt/ckpt-22499/flax_model.msgpack +3 -0
- ckpt/ckpt-22499/training_state.json +1 -0
- model/__init__.py +0 -0
- model/flax_clip_vision_mbart/__init__.py +0 -0
- model/flax_clip_vision_mbart/__pycache__/__init__.cpython-38.pyc +0 -0
- model/flax_clip_vision_mbart/__pycache__/configuration_clip_vision_mbart.cpython-38.pyc +0 -0
- model/flax_clip_vision_mbart/__pycache__/generation_clip_vision_utils.cpython-38.pyc +0 -0
- model/flax_clip_vision_mbart/__pycache__/modeling_clip_vision_mbart.cpython-38.pyc +0 -0
- model/flax_clip_vision_mbart/__pycache__/modeling_clip_vision_utils.cpython-38.pyc +0 -0
- model/flax_clip_vision_mbart/configuration_clip_vision_mbart.py +51 -0
- model/flax_clip_vision_mbart/generation_clip_vision_utils.py +990 -0
- model/flax_clip_vision_mbart/modeling_clip_vision_mbart.py +778 -0
- model/flax_clip_vision_mbart/modeling_clip_vision_utils.py +451 -0
ckpt/ckpt-17499/config.json
ADDED
|
@@ -0,0 +1,316 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"CLIPVisionMBartForConditionalGeneration"
|
| 4 |
+
],
|
| 5 |
+
"clip_vision_config": {
|
| 6 |
+
"_name_or_path": "",
|
| 7 |
+
"add_cross_attention": false,
|
| 8 |
+
"architectures": [
|
| 9 |
+
"CLIPModel"
|
| 10 |
+
],
|
| 11 |
+
"attention_dropout": 0.0,
|
| 12 |
+
"bad_words_ids": null,
|
| 13 |
+
"bos_token_id": null,
|
| 14 |
+
"chunk_size_feed_forward": 0,
|
| 15 |
+
"decoder_start_token_id": null,
|
| 16 |
+
"diversity_penalty": 0.0,
|
| 17 |
+
"do_sample": false,
|
| 18 |
+
"dropout": 0.0,
|
| 19 |
+
"early_stopping": false,
|
| 20 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 21 |
+
"eos_token_id": null,
|
| 22 |
+
"finetuning_task": null,
|
| 23 |
+
"forced_bos_token_id": null,
|
| 24 |
+
"forced_eos_token_id": null,
|
| 25 |
+
"gradient_checkpointing": false,
|
| 26 |
+
"hidden_act": "quick_gelu",
|
| 27 |
+
"hidden_size": 768,
|
| 28 |
+
"id2label": {
|
| 29 |
+
"0": "LABEL_0",
|
| 30 |
+
"1": "LABEL_1"
|
| 31 |
+
},
|
| 32 |
+
"image_size": 224,
|
| 33 |
+
"initializer_factor": 1.0,
|
| 34 |
+
"initializer_range": 0.02,
|
| 35 |
+
"intermediate_size": 3072,
|
| 36 |
+
"is_decoder": false,
|
| 37 |
+
"is_encoder_decoder": false,
|
| 38 |
+
"label2id": {
|
| 39 |
+
"LABEL_0": 0,
|
| 40 |
+
"LABEL_1": 1
|
| 41 |
+
},
|
| 42 |
+
"layer_norm_eps": 1e-05,
|
| 43 |
+
"length_penalty": 1.0,
|
| 44 |
+
"max_length": 20,
|
| 45 |
+
"min_length": 0,
|
| 46 |
+
"model_type": "clip_vision_model",
|
| 47 |
+
"no_repeat_ngram_size": 0,
|
| 48 |
+
"num_attention_heads": 12,
|
| 49 |
+
"num_beam_groups": 1,
|
| 50 |
+
"num_beams": 1,
|
| 51 |
+
"num_hidden_layers": 12,
|
| 52 |
+
"num_return_sequences": 1,
|
| 53 |
+
"output_attentions": false,
|
| 54 |
+
"output_hidden_states": false,
|
| 55 |
+
"output_scores": false,
|
| 56 |
+
"pad_token_id": null,
|
| 57 |
+
"patch_size": 32,
|
| 58 |
+
"prefix": null,
|
| 59 |
+
"problem_type": null,
|
| 60 |
+
"projection_dim": 512,
|
| 61 |
+
"pruned_heads": {},
|
| 62 |
+
"remove_invalid_values": false,
|
| 63 |
+
"repetition_penalty": 1.0,
|
| 64 |
+
"return_dict": true,
|
| 65 |
+
"return_dict_in_generate": false,
|
| 66 |
+
"sep_token_id": null,
|
| 67 |
+
"task_specific_params": null,
|
| 68 |
+
"temperature": 1.0,
|
| 69 |
+
"text_config": {
|
| 70 |
+
"_name_or_path": "",
|
| 71 |
+
"add_cross_attention": false,
|
| 72 |
+
"architectures": null,
|
| 73 |
+
"attention_dropout": 0.0,
|
| 74 |
+
"bad_words_ids": null,
|
| 75 |
+
"bos_token_id": 0,
|
| 76 |
+
"chunk_size_feed_forward": 0,
|
| 77 |
+
"decoder_start_token_id": null,
|
| 78 |
+
"diversity_penalty": 0.0,
|
| 79 |
+
"do_sample": false,
|
| 80 |
+
"dropout": 0.0,
|
| 81 |
+
"early_stopping": false,
|
| 82 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 83 |
+
"eos_token_id": 2,
|
| 84 |
+
"finetuning_task": null,
|
| 85 |
+
"forced_bos_token_id": null,
|
| 86 |
+
"forced_eos_token_id": null,
|
| 87 |
+
"gradient_checkpointing": false,
|
| 88 |
+
"hidden_act": "quick_gelu",
|
| 89 |
+
"hidden_size": 512,
|
| 90 |
+
"id2label": {
|
| 91 |
+
"0": "LABEL_0",
|
| 92 |
+
"1": "LABEL_1"
|
| 93 |
+
},
|
| 94 |
+
"initializer_factor": 1.0,
|
| 95 |
+
"initializer_range": 0.02,
|
| 96 |
+
"intermediate_size": 2048,
|
| 97 |
+
"is_decoder": false,
|
| 98 |
+
"is_encoder_decoder": false,
|
| 99 |
+
"label2id": {
|
| 100 |
+
"LABEL_0": 0,
|
| 101 |
+
"LABEL_1": 1
|
| 102 |
+
},
|
| 103 |
+
"layer_norm_eps": 1e-05,
|
| 104 |
+
"length_penalty": 1.0,
|
| 105 |
+
"max_length": 20,
|
| 106 |
+
"max_position_embeddings": 77,
|
| 107 |
+
"min_length": 0,
|
| 108 |
+
"model_type": "clip_text_model",
|
| 109 |
+
"no_repeat_ngram_size": 0,
|
| 110 |
+
"num_attention_heads": 8,
|
| 111 |
+
"num_beam_groups": 1,
|
| 112 |
+
"num_beams": 1,
|
| 113 |
+
"num_hidden_layers": 12,
|
| 114 |
+
"num_return_sequences": 1,
|
| 115 |
+
"output_attentions": false,
|
| 116 |
+
"output_hidden_states": false,
|
| 117 |
+
"output_scores": false,
|
| 118 |
+
"pad_token_id": 1,
|
| 119 |
+
"prefix": null,
|
| 120 |
+
"problem_type": null,
|
| 121 |
+
"pruned_heads": {},
|
| 122 |
+
"remove_invalid_values": false,
|
| 123 |
+
"repetition_penalty": 1.0,
|
| 124 |
+
"return_dict": true,
|
| 125 |
+
"return_dict_in_generate": false,
|
| 126 |
+
"sep_token_id": null,
|
| 127 |
+
"task_specific_params": null,
|
| 128 |
+
"temperature": 1.0,
|
| 129 |
+
"tie_encoder_decoder": false,
|
| 130 |
+
"tie_word_embeddings": true,
|
| 131 |
+
"tokenizer_class": null,
|
| 132 |
+
"top_k": 50,
|
| 133 |
+
"top_p": 1.0,
|
| 134 |
+
"torchscript": false,
|
| 135 |
+
"transformers_version": "4.7.0.dev0",
|
| 136 |
+
"use_bfloat16": false,
|
| 137 |
+
"vocab_size": 49408
|
| 138 |
+
},
|
| 139 |
+
"text_config_dict": null,
|
| 140 |
+
"tie_encoder_decoder": false,
|
| 141 |
+
"tie_word_embeddings": true,
|
| 142 |
+
"tokenizer_class": null,
|
| 143 |
+
"top_k": 50,
|
| 144 |
+
"top_p": 1.0,
|
| 145 |
+
"torch_dtype": null,
|
| 146 |
+
"torchscript": false,
|
| 147 |
+
"transformers_version": "4.9.0.dev0",
|
| 148 |
+
"use_bfloat16": false,
|
| 149 |
+
"vision_config": {
|
| 150 |
+
"_name_or_path": "",
|
| 151 |
+
"add_cross_attention": false,
|
| 152 |
+
"architectures": null,
|
| 153 |
+
"attention_dropout": 0.0,
|
| 154 |
+
"bad_words_ids": null,
|
| 155 |
+
"bos_token_id": null,
|
| 156 |
+
"chunk_size_feed_forward": 0,
|
| 157 |
+
"decoder_start_token_id": null,
|
| 158 |
+
"diversity_penalty": 0.0,
|
| 159 |
+
"do_sample": false,
|
| 160 |
+
"dropout": 0.0,
|
| 161 |
+
"early_stopping": false,
|
| 162 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 163 |
+
"eos_token_id": null,
|
| 164 |
+
"finetuning_task": null,
|
| 165 |
+
"forced_bos_token_id": null,
|
| 166 |
+
"forced_eos_token_id": null,
|
| 167 |
+
"gradient_checkpointing": false,
|
| 168 |
+
"hidden_act": "quick_gelu",
|
| 169 |
+
"hidden_size": 768,
|
| 170 |
+
"id2label": {
|
| 171 |
+
"0": "LABEL_0",
|
| 172 |
+
"1": "LABEL_1"
|
| 173 |
+
},
|
| 174 |
+
"image_size": 224,
|
| 175 |
+
"initializer_factor": 1.0,
|
| 176 |
+
"initializer_range": 0.02,
|
| 177 |
+
"intermediate_size": 3072,
|
| 178 |
+
"is_decoder": false,
|
| 179 |
+
"is_encoder_decoder": false,
|
| 180 |
+
"label2id": {
|
| 181 |
+
"LABEL_0": 0,
|
| 182 |
+
"LABEL_1": 1
|
| 183 |
+
},
|
| 184 |
+
"layer_norm_eps": 1e-05,
|
| 185 |
+
"length_penalty": 1.0,
|
| 186 |
+
"max_length": 20,
|
| 187 |
+
"min_length": 0,
|
| 188 |
+
"model_type": "clip_vision_model",
|
| 189 |
+
"no_repeat_ngram_size": 0,
|
| 190 |
+
"num_attention_heads": 12,
|
| 191 |
+
"num_beam_groups": 1,
|
| 192 |
+
"num_beams": 1,
|
| 193 |
+
"num_hidden_layers": 12,
|
| 194 |
+
"num_return_sequences": 1,
|
| 195 |
+
"output_attentions": false,
|
| 196 |
+
"output_hidden_states": false,
|
| 197 |
+
"output_scores": false,
|
| 198 |
+
"pad_token_id": null,
|
| 199 |
+
"patch_size": 32,
|
| 200 |
+
"prefix": null,
|
| 201 |
+
"problem_type": null,
|
| 202 |
+
"pruned_heads": {},
|
| 203 |
+
"remove_invalid_values": false,
|
| 204 |
+
"repetition_penalty": 1.0,
|
| 205 |
+
"return_dict": true,
|
| 206 |
+
"return_dict_in_generate": false,
|
| 207 |
+
"sep_token_id": null,
|
| 208 |
+
"task_specific_params": null,
|
| 209 |
+
"temperature": 1.0,
|
| 210 |
+
"tie_encoder_decoder": false,
|
| 211 |
+
"tie_word_embeddings": true,
|
| 212 |
+
"tokenizer_class": null,
|
| 213 |
+
"top_k": 50,
|
| 214 |
+
"top_p": 1.0,
|
| 215 |
+
"torchscript": false,
|
| 216 |
+
"transformers_version": "4.7.0.dev0",
|
| 217 |
+
"use_bfloat16": false
|
| 218 |
+
},
|
| 219 |
+
"vision_config_dict": null
|
| 220 |
+
},
|
| 221 |
+
"is_encoder_decoder": true,
|
| 222 |
+
"mbart_config": {
|
| 223 |
+
"_name_or_path": "/home/suraj/projects/mbart-50/hf_models/mbart-50-large",
|
| 224 |
+
"_num_labels": 3,
|
| 225 |
+
"activation_dropout": 0.0,
|
| 226 |
+
"activation_function": "gelu",
|
| 227 |
+
"add_bias_logits": false,
|
| 228 |
+
"add_cross_attention": false,
|
| 229 |
+
"add_final_layer_norm": true,
|
| 230 |
+
"architectures": [
|
| 231 |
+
"MBartForConditionalGeneration"
|
| 232 |
+
],
|
| 233 |
+
"attention_dropout": 0.0,
|
| 234 |
+
"bad_words_ids": null,
|
| 235 |
+
"bos_token_id": 0,
|
| 236 |
+
"chunk_size_feed_forward": 0,
|
| 237 |
+
"classif_dropout": 0.0,
|
| 238 |
+
"classifier_dropout": 0.0,
|
| 239 |
+
"d_model": 1024,
|
| 240 |
+
"decoder_attention_heads": 16,
|
| 241 |
+
"decoder_ffn_dim": 4096,
|
| 242 |
+
"decoder_layerdrop": 0.0,
|
| 243 |
+
"decoder_layers": 12,
|
| 244 |
+
"decoder_start_token_id": 2,
|
| 245 |
+
"diversity_penalty": 0.0,
|
| 246 |
+
"do_sample": false,
|
| 247 |
+
"dropout": 0.1,
|
| 248 |
+
"early_stopping": true,
|
| 249 |
+
"encoder_attention_heads": 16,
|
| 250 |
+
"encoder_ffn_dim": 4096,
|
| 251 |
+
"encoder_layerdrop": 0.0,
|
| 252 |
+
"encoder_layers": 12,
|
| 253 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 254 |
+
"eos_token_id": 2,
|
| 255 |
+
"finetuning_task": null,
|
| 256 |
+
"forced_bos_token_id": null,
|
| 257 |
+
"forced_eos_token_id": 2,
|
| 258 |
+
"gradient_checkpointing": false,
|
| 259 |
+
"id2label": {
|
| 260 |
+
"0": "LABEL_0",
|
| 261 |
+
"1": "LABEL_1",
|
| 262 |
+
"2": "LABEL_2"
|
| 263 |
+
},
|
| 264 |
+
"init_std": 0.02,
|
| 265 |
+
"is_decoder": false,
|
| 266 |
+
"is_encoder_decoder": true,
|
| 267 |
+
"label2id": {
|
| 268 |
+
"LABEL_0": 0,
|
| 269 |
+
"LABEL_1": 1,
|
| 270 |
+
"LABEL_2": 2
|
| 271 |
+
},
|
| 272 |
+
"length_penalty": 1.0,
|
| 273 |
+
"max_length": 200,
|
| 274 |
+
"max_position_embeddings": 1024,
|
| 275 |
+
"min_length": 0,
|
| 276 |
+
"model_type": "mbart",
|
| 277 |
+
"no_repeat_ngram_size": 0,
|
| 278 |
+
"normalize_before": true,
|
| 279 |
+
"normalize_embedding": true,
|
| 280 |
+
"num_beam_groups": 1,
|
| 281 |
+
"num_beams": 5,
|
| 282 |
+
"num_hidden_layers": 12,
|
| 283 |
+
"num_return_sequences": 1,
|
| 284 |
+
"output_attentions": false,
|
| 285 |
+
"output_hidden_states": false,
|
| 286 |
+
"output_past": true,
|
| 287 |
+
"output_scores": false,
|
| 288 |
+
"pad_token_id": 1,
|
| 289 |
+
"prefix": null,
|
| 290 |
+
"problem_type": null,
|
| 291 |
+
"pruned_heads": {},
|
| 292 |
+
"remove_invalid_values": false,
|
| 293 |
+
"repetition_penalty": 1.0,
|
| 294 |
+
"return_dict": true,
|
| 295 |
+
"return_dict_in_generate": false,
|
| 296 |
+
"scale_embedding": true,
|
| 297 |
+
"sep_token_id": null,
|
| 298 |
+
"static_position_embeddings": false,
|
| 299 |
+
"task_specific_params": null,
|
| 300 |
+
"temperature": 1.0,
|
| 301 |
+
"tie_encoder_decoder": false,
|
| 302 |
+
"tie_word_embeddings": true,
|
| 303 |
+
"tokenizer_class": "MBart50Tokenizer",
|
| 304 |
+
"top_k": 50,
|
| 305 |
+
"top_p": 1.0,
|
| 306 |
+
"torch_dtype": null,
|
| 307 |
+
"torchscript": false,
|
| 308 |
+
"transformers_version": "4.9.0.dev0",
|
| 309 |
+
"use_bfloat16": false,
|
| 310 |
+
"use_cache": true,
|
| 311 |
+
"vocab_size": 250054
|
| 312 |
+
},
|
| 313 |
+
"model_type": "clip-vision-mbart",
|
| 314 |
+
"seed": 42,
|
| 315 |
+
"transformers_version": null
|
| 316 |
+
}
|
ckpt/ckpt-17499/flax_model.msgpack
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ba3b8ac816ef15ada01eb3113655105688f09071b40f0d140f2456696ffd80ab
|
| 3 |
+
size 2188672582
|
ckpt/ckpt-17499/training_state.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"step": 17500}
|
ckpt/ckpt-22499/config.json
ADDED
|
@@ -0,0 +1,316 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"CLIPVisionMBartForConditionalGeneration"
|
| 4 |
+
],
|
| 5 |
+
"clip_vision_config": {
|
| 6 |
+
"_name_or_path": "",
|
| 7 |
+
"add_cross_attention": false,
|
| 8 |
+
"architectures": [
|
| 9 |
+
"CLIPModel"
|
| 10 |
+
],
|
| 11 |
+
"attention_dropout": 0.0,
|
| 12 |
+
"bad_words_ids": null,
|
| 13 |
+
"bos_token_id": null,
|
| 14 |
+
"chunk_size_feed_forward": 0,
|
| 15 |
+
"decoder_start_token_id": null,
|
| 16 |
+
"diversity_penalty": 0.0,
|
| 17 |
+
"do_sample": false,
|
| 18 |
+
"dropout": 0.0,
|
| 19 |
+
"early_stopping": false,
|
| 20 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 21 |
+
"eos_token_id": null,
|
| 22 |
+
"finetuning_task": null,
|
| 23 |
+
"forced_bos_token_id": null,
|
| 24 |
+
"forced_eos_token_id": null,
|
| 25 |
+
"gradient_checkpointing": false,
|
| 26 |
+
"hidden_act": "quick_gelu",
|
| 27 |
+
"hidden_size": 768,
|
| 28 |
+
"id2label": {
|
| 29 |
+
"0": "LABEL_0",
|
| 30 |
+
"1": "LABEL_1"
|
| 31 |
+
},
|
| 32 |
+
"image_size": 224,
|
| 33 |
+
"initializer_factor": 1.0,
|
| 34 |
+
"initializer_range": 0.02,
|
| 35 |
+
"intermediate_size": 3072,
|
| 36 |
+
"is_decoder": false,
|
| 37 |
+
"is_encoder_decoder": false,
|
| 38 |
+
"label2id": {
|
| 39 |
+
"LABEL_0": 0,
|
| 40 |
+
"LABEL_1": 1
|
| 41 |
+
},
|
| 42 |
+
"layer_norm_eps": 1e-05,
|
| 43 |
+
"length_penalty": 1.0,
|
| 44 |
+
"max_length": 20,
|
| 45 |
+
"min_length": 0,
|
| 46 |
+
"model_type": "clip_vision_model",
|
| 47 |
+
"no_repeat_ngram_size": 0,
|
| 48 |
+
"num_attention_heads": 12,
|
| 49 |
+
"num_beam_groups": 1,
|
| 50 |
+
"num_beams": 1,
|
| 51 |
+
"num_hidden_layers": 12,
|
| 52 |
+
"num_return_sequences": 1,
|
| 53 |
+
"output_attentions": false,
|
| 54 |
+
"output_hidden_states": false,
|
| 55 |
+
"output_scores": false,
|
| 56 |
+
"pad_token_id": null,
|
| 57 |
+
"patch_size": 32,
|
| 58 |
+
"prefix": null,
|
| 59 |
+
"problem_type": null,
|
| 60 |
+
"projection_dim": 512,
|
| 61 |
+
"pruned_heads": {},
|
| 62 |
+
"remove_invalid_values": false,
|
| 63 |
+
"repetition_penalty": 1.0,
|
| 64 |
+
"return_dict": true,
|
| 65 |
+
"return_dict_in_generate": false,
|
| 66 |
+
"sep_token_id": null,
|
| 67 |
+
"task_specific_params": null,
|
| 68 |
+
"temperature": 1.0,
|
| 69 |
+
"text_config": {
|
| 70 |
+
"_name_or_path": "",
|
| 71 |
+
"add_cross_attention": false,
|
| 72 |
+
"architectures": null,
|
| 73 |
+
"attention_dropout": 0.0,
|
| 74 |
+
"bad_words_ids": null,
|
| 75 |
+
"bos_token_id": 0,
|
| 76 |
+
"chunk_size_feed_forward": 0,
|
| 77 |
+
"decoder_start_token_id": null,
|
| 78 |
+
"diversity_penalty": 0.0,
|
| 79 |
+
"do_sample": false,
|
| 80 |
+
"dropout": 0.0,
|
| 81 |
+
"early_stopping": false,
|
| 82 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 83 |
+
"eos_token_id": 2,
|
| 84 |
+
"finetuning_task": null,
|
| 85 |
+
"forced_bos_token_id": null,
|
| 86 |
+
"forced_eos_token_id": null,
|
| 87 |
+
"gradient_checkpointing": false,
|
| 88 |
+
"hidden_act": "quick_gelu",
|
| 89 |
+
"hidden_size": 512,
|
| 90 |
+
"id2label": {
|
| 91 |
+
"0": "LABEL_0",
|
| 92 |
+
"1": "LABEL_1"
|
| 93 |
+
},
|
| 94 |
+
"initializer_factor": 1.0,
|
| 95 |
+
"initializer_range": 0.02,
|
| 96 |
+
"intermediate_size": 2048,
|
| 97 |
+
"is_decoder": false,
|
| 98 |
+
"is_encoder_decoder": false,
|
| 99 |
+
"label2id": {
|
| 100 |
+
"LABEL_0": 0,
|
| 101 |
+
"LABEL_1": 1
|
| 102 |
+
},
|
| 103 |
+
"layer_norm_eps": 1e-05,
|
| 104 |
+
"length_penalty": 1.0,
|
| 105 |
+
"max_length": 20,
|
| 106 |
+
"max_position_embeddings": 77,
|
| 107 |
+
"min_length": 0,
|
| 108 |
+
"model_type": "clip_text_model",
|
| 109 |
+
"no_repeat_ngram_size": 0,
|
| 110 |
+
"num_attention_heads": 8,
|
| 111 |
+
"num_beam_groups": 1,
|
| 112 |
+
"num_beams": 1,
|
| 113 |
+
"num_hidden_layers": 12,
|
| 114 |
+
"num_return_sequences": 1,
|
| 115 |
+
"output_attentions": false,
|
| 116 |
+
"output_hidden_states": false,
|
| 117 |
+
"output_scores": false,
|
| 118 |
+
"pad_token_id": 1,
|
| 119 |
+
"prefix": null,
|
| 120 |
+
"problem_type": null,
|
| 121 |
+
"pruned_heads": {},
|
| 122 |
+
"remove_invalid_values": false,
|
| 123 |
+
"repetition_penalty": 1.0,
|
| 124 |
+
"return_dict": true,
|
| 125 |
+
"return_dict_in_generate": false,
|
| 126 |
+
"sep_token_id": null,
|
| 127 |
+
"task_specific_params": null,
|
| 128 |
+
"temperature": 1.0,
|
| 129 |
+
"tie_encoder_decoder": false,
|
| 130 |
+
"tie_word_embeddings": true,
|
| 131 |
+
"tokenizer_class": null,
|
| 132 |
+
"top_k": 50,
|
| 133 |
+
"top_p": 1.0,
|
| 134 |
+
"torchscript": false,
|
| 135 |
+
"transformers_version": "4.7.0.dev0",
|
| 136 |
+
"use_bfloat16": false,
|
| 137 |
+
"vocab_size": 49408
|
| 138 |
+
},
|
| 139 |
+
"text_config_dict": null,
|
| 140 |
+
"tie_encoder_decoder": false,
|
| 141 |
+
"tie_word_embeddings": true,
|
| 142 |
+
"tokenizer_class": null,
|
| 143 |
+
"top_k": 50,
|
| 144 |
+
"top_p": 1.0,
|
| 145 |
+
"torch_dtype": null,
|
| 146 |
+
"torchscript": false,
|
| 147 |
+
"transformers_version": "4.9.0.dev0",
|
| 148 |
+
"use_bfloat16": false,
|
| 149 |
+
"vision_config": {
|
| 150 |
+
"_name_or_path": "",
|
| 151 |
+
"add_cross_attention": false,
|
| 152 |
+
"architectures": null,
|
| 153 |
+
"attention_dropout": 0.0,
|
| 154 |
+
"bad_words_ids": null,
|
| 155 |
+
"bos_token_id": null,
|
| 156 |
+
"chunk_size_feed_forward": 0,
|
| 157 |
+
"decoder_start_token_id": null,
|
| 158 |
+
"diversity_penalty": 0.0,
|
| 159 |
+
"do_sample": false,
|
| 160 |
+
"dropout": 0.0,
|
| 161 |
+
"early_stopping": false,
|
| 162 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 163 |
+
"eos_token_id": null,
|
| 164 |
+
"finetuning_task": null,
|
| 165 |
+
"forced_bos_token_id": null,
|
| 166 |
+
"forced_eos_token_id": null,
|
| 167 |
+
"gradient_checkpointing": false,
|
| 168 |
+
"hidden_act": "quick_gelu",
|
| 169 |
+
"hidden_size": 768,
|
| 170 |
+
"id2label": {
|
| 171 |
+
"0": "LABEL_0",
|
| 172 |
+
"1": "LABEL_1"
|
| 173 |
+
},
|
| 174 |
+
"image_size": 224,
|
| 175 |
+
"initializer_factor": 1.0,
|
| 176 |
+
"initializer_range": 0.02,
|
| 177 |
+
"intermediate_size": 3072,
|
| 178 |
+
"is_decoder": false,
|
| 179 |
+
"is_encoder_decoder": false,
|
| 180 |
+
"label2id": {
|
| 181 |
+
"LABEL_0": 0,
|
| 182 |
+
"LABEL_1": 1
|
| 183 |
+
},
|
| 184 |
+
"layer_norm_eps": 1e-05,
|
| 185 |
+
"length_penalty": 1.0,
|
| 186 |
+
"max_length": 20,
|
| 187 |
+
"min_length": 0,
|
| 188 |
+
"model_type": "clip_vision_model",
|
| 189 |
+
"no_repeat_ngram_size": 0,
|
| 190 |
+
"num_attention_heads": 12,
|
| 191 |
+
"num_beam_groups": 1,
|
| 192 |
+
"num_beams": 1,
|
| 193 |
+
"num_hidden_layers": 12,
|
| 194 |
+
"num_return_sequences": 1,
|
| 195 |
+
"output_attentions": false,
|
| 196 |
+
"output_hidden_states": false,
|
| 197 |
+
"output_scores": false,
|
| 198 |
+
"pad_token_id": null,
|
| 199 |
+
"patch_size": 32,
|
| 200 |
+
"prefix": null,
|
| 201 |
+
"problem_type": null,
|
| 202 |
+
"pruned_heads": {},
|
| 203 |
+
"remove_invalid_values": false,
|
| 204 |
+
"repetition_penalty": 1.0,
|
| 205 |
+
"return_dict": true,
|
| 206 |
+
"return_dict_in_generate": false,
|
| 207 |
+
"sep_token_id": null,
|
| 208 |
+
"task_specific_params": null,
|
| 209 |
+
"temperature": 1.0,
|
| 210 |
+
"tie_encoder_decoder": false,
|
| 211 |
+
"tie_word_embeddings": true,
|
| 212 |
+
"tokenizer_class": null,
|
| 213 |
+
"top_k": 50,
|
| 214 |
+
"top_p": 1.0,
|
| 215 |
+
"torchscript": false,
|
| 216 |
+
"transformers_version": "4.7.0.dev0",
|
| 217 |
+
"use_bfloat16": false
|
| 218 |
+
},
|
| 219 |
+
"vision_config_dict": null
|
| 220 |
+
},
|
| 221 |
+
"is_encoder_decoder": true,
|
| 222 |
+
"mbart_config": {
|
| 223 |
+
"_name_or_path": "/home/suraj/projects/mbart-50/hf_models/mbart-50-large",
|
| 224 |
+
"_num_labels": 3,
|
| 225 |
+
"activation_dropout": 0.0,
|
| 226 |
+
"activation_function": "gelu",
|
| 227 |
+
"add_bias_logits": false,
|
| 228 |
+
"add_cross_attention": false,
|
| 229 |
+
"add_final_layer_norm": true,
|
| 230 |
+
"architectures": [
|
| 231 |
+
"MBartForConditionalGeneration"
|
| 232 |
+
],
|
| 233 |
+
"attention_dropout": 0.0,
|
| 234 |
+
"bad_words_ids": null,
|
| 235 |
+
"bos_token_id": 0,
|
| 236 |
+
"chunk_size_feed_forward": 0,
|
| 237 |
+
"classif_dropout": 0.0,
|
| 238 |
+
"classifier_dropout": 0.0,
|
| 239 |
+
"d_model": 1024,
|
| 240 |
+
"decoder_attention_heads": 16,
|
| 241 |
+
"decoder_ffn_dim": 4096,
|
| 242 |
+
"decoder_layerdrop": 0.0,
|
| 243 |
+
"decoder_layers": 12,
|
| 244 |
+
"decoder_start_token_id": 2,
|
| 245 |
+
"diversity_penalty": 0.0,
|
| 246 |
+
"do_sample": false,
|
| 247 |
+
"dropout": 0.1,
|
| 248 |
+
"early_stopping": true,
|
| 249 |
+
"encoder_attention_heads": 16,
|
| 250 |
+
"encoder_ffn_dim": 4096,
|
| 251 |
+
"encoder_layerdrop": 0.0,
|
| 252 |
+
"encoder_layers": 12,
|
| 253 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 254 |
+
"eos_token_id": 2,
|
| 255 |
+
"finetuning_task": null,
|
| 256 |
+
"forced_bos_token_id": null,
|
| 257 |
+
"forced_eos_token_id": 2,
|
| 258 |
+
"gradient_checkpointing": false,
|
| 259 |
+
"id2label": {
|
| 260 |
+
"0": "LABEL_0",
|
| 261 |
+
"1": "LABEL_1",
|
| 262 |
+
"2": "LABEL_2"
|
| 263 |
+
},
|
| 264 |
+
"init_std": 0.02,
|
| 265 |
+
"is_decoder": false,
|
| 266 |
+
"is_encoder_decoder": true,
|
| 267 |
+
"label2id": {
|
| 268 |
+
"LABEL_0": 0,
|
| 269 |
+
"LABEL_1": 1,
|
| 270 |
+
"LABEL_2": 2
|
| 271 |
+
},
|
| 272 |
+
"length_penalty": 1.0,
|
| 273 |
+
"max_length": 200,
|
| 274 |
+
"max_position_embeddings": 1024,
|
| 275 |
+
"min_length": 0,
|
| 276 |
+
"model_type": "mbart",
|
| 277 |
+
"no_repeat_ngram_size": 0,
|
| 278 |
+
"normalize_before": true,
|
| 279 |
+
"normalize_embedding": true,
|
| 280 |
+
"num_beam_groups": 1,
|
| 281 |
+
"num_beams": 5,
|
| 282 |
+
"num_hidden_layers": 12,
|
| 283 |
+
"num_return_sequences": 1,
|
| 284 |
+
"output_attentions": false,
|
| 285 |
+
"output_hidden_states": false,
|
| 286 |
+
"output_past": true,
|
| 287 |
+
"output_scores": false,
|
| 288 |
+
"pad_token_id": 1,
|
| 289 |
+
"prefix": null,
|
| 290 |
+
"problem_type": null,
|
| 291 |
+
"pruned_heads": {},
|
| 292 |
+
"remove_invalid_values": false,
|
| 293 |
+
"repetition_penalty": 1.0,
|
| 294 |
+
"return_dict": true,
|
| 295 |
+
"return_dict_in_generate": false,
|
| 296 |
+
"scale_embedding": true,
|
| 297 |
+
"sep_token_id": null,
|
| 298 |
+
"static_position_embeddings": false,
|
| 299 |
+
"task_specific_params": null,
|
| 300 |
+
"temperature": 1.0,
|
| 301 |
+
"tie_encoder_decoder": false,
|
| 302 |
+
"tie_word_embeddings": true,
|
| 303 |
+
"tokenizer_class": "MBart50Tokenizer",
|
| 304 |
+
"top_k": 50,
|
| 305 |
+
"top_p": 1.0,
|
| 306 |
+
"torch_dtype": null,
|
| 307 |
+
"torchscript": false,
|
| 308 |
+
"transformers_version": "4.9.0.dev0",
|
| 309 |
+
"use_bfloat16": false,
|
| 310 |
+
"use_cache": true,
|
| 311 |
+
"vocab_size": 250054
|
| 312 |
+
},
|
| 313 |
+
"model_type": "clip-vision-mbart",
|
| 314 |
+
"seed": 42,
|
| 315 |
+
"transformers_version": null
|
| 316 |
+
}
|
ckpt/ckpt-22499/flax_model.msgpack
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5a114e6b1155a93a547c2c29c87afb18f4bcb52535373fdf73bdc983de23b604
|
| 3 |
+
size 2188672582
|
ckpt/ckpt-22499/training_state.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"step": 22500}
|
model/__init__.py
ADDED
|
File without changes
|
model/flax_clip_vision_mbart/__init__.py
ADDED
|
File without changes
|
model/flax_clip_vision_mbart/__pycache__/__init__.cpython-38.pyc
ADDED
|
Binary file (184 Bytes). View file
|
|
|
model/flax_clip_vision_mbart/__pycache__/configuration_clip_vision_mbart.cpython-38.pyc
ADDED
|
Binary file (1.7 kB). View file
|
|
|
model/flax_clip_vision_mbart/__pycache__/generation_clip_vision_utils.cpython-38.pyc
ADDED
|
Binary file (21.8 kB). View file
|
|
|
model/flax_clip_vision_mbart/__pycache__/modeling_clip_vision_mbart.cpython-38.pyc
ADDED
|
Binary file (15.5 kB). View file
|
|
|
model/flax_clip_vision_mbart/__pycache__/modeling_clip_vision_utils.cpython-38.pyc
ADDED
|
Binary file (16.6 kB). View file
|
|
|
model/flax_clip_vision_mbart/configuration_clip_vision_mbart.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
|
| 3 |
+
from transformers import CLIPVisionConfig, MBartConfig
|
| 4 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 5 |
+
from transformers.utils import logging
|
| 6 |
+
|
| 7 |
+
logger = logging.get_logger(__name__)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class CLIPVisionMBartConfig(PretrainedConfig):
|
| 11 |
+
|
| 12 |
+
model_type = "clip-vision-mbart"
|
| 13 |
+
is_composition = True
|
| 14 |
+
|
| 15 |
+
def __init__(self, **kwargs):
|
| 16 |
+
super().__init__(**kwargs)
|
| 17 |
+
|
| 18 |
+
if "mbart_config" not in kwargs:
|
| 19 |
+
raise ValueError("`mbart_config` can not be `None`.")
|
| 20 |
+
|
| 21 |
+
if "clip_vision_config" not in kwargs:
|
| 22 |
+
raise ValueError("`clip_vision_config` can not be `None`.")
|
| 23 |
+
|
| 24 |
+
mbart_config = kwargs.pop("mbart_config")
|
| 25 |
+
clip_vision_config = kwargs.pop("clip_vision_config")
|
| 26 |
+
|
| 27 |
+
self.mbart_config = MBartConfig(**mbart_config)
|
| 28 |
+
|
| 29 |
+
self.clip_vision_config = CLIPVisionConfig(**clip_vision_config)
|
| 30 |
+
|
| 31 |
+
self.is_encoder_decoder = True
|
| 32 |
+
|
| 33 |
+
@classmethod
|
| 34 |
+
def from_clip_vision_mbart_configs(
|
| 35 |
+
cls,
|
| 36 |
+
clip_vision_config: PretrainedConfig,
|
| 37 |
+
mbart_config: PretrainedConfig,
|
| 38 |
+
**kwargs
|
| 39 |
+
):
|
| 40 |
+
return cls(
|
| 41 |
+
clip_vision_config=clip_vision_config.to_dict(),
|
| 42 |
+
mbart_config=mbart_config.to_dict(),
|
| 43 |
+
**kwargs
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
def to_dict(self):
|
| 47 |
+
output = copy.deepcopy(self.__dict__)
|
| 48 |
+
output["clip_vision_config"] = self.clip_vision_config.to_dict()
|
| 49 |
+
output["mbart_config"] = self.mbart_config.to_dict()
|
| 50 |
+
output["model_type"] = self.__class__.model_type
|
| 51 |
+
return output
|
model/flax_clip_vision_mbart/generation_clip_vision_utils.py
ADDED
|
@@ -0,0 +1,990 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, Optional
|
| 2 |
+
|
| 3 |
+
import flax
|
| 4 |
+
import jax
|
| 5 |
+
import jax.numpy as jnp
|
| 6 |
+
import jaxlib.xla_extension as jax_xla
|
| 7 |
+
import numpy as np
|
| 8 |
+
from jax import lax
|
| 9 |
+
from transformers.file_utils import ModelOutput
|
| 10 |
+
from transformers.generation_flax_logits_process import (
|
| 11 |
+
FlaxForcedBOSTokenLogitsProcessor,
|
| 12 |
+
FlaxForcedEOSTokenLogitsProcessor,
|
| 13 |
+
FlaxLogitsProcessorList,
|
| 14 |
+
FlaxMinLengthLogitsProcessor,
|
| 15 |
+
FlaxTemperatureLogitsWarper,
|
| 16 |
+
FlaxTopKLogitsWarper,
|
| 17 |
+
FlaxTopPLogitsWarper,
|
| 18 |
+
)
|
| 19 |
+
from transformers.utils import logging
|
| 20 |
+
|
| 21 |
+
logger = logging.get_logger(__name__)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
@flax.struct.dataclass
|
| 25 |
+
class FlaxGreedySearchOutput(ModelOutput):
|
| 26 |
+
"""
|
| 27 |
+
Flax Base class for outputs of decoder-only generation models using greedy search.
|
| 28 |
+
Args:
|
| 29 |
+
sequences (:obj:`jax_xla.DeviceArray` of shape :obj:`(batch_size, max_length)`):
|
| 30 |
+
The generated sequences.
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
+
sequences: jax_xla.DeviceArray = None
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
@flax.struct.dataclass
|
| 37 |
+
class FlaxSampleOutput(ModelOutput):
|
| 38 |
+
"""
|
| 39 |
+
Flax Base class for outputs of decoder-only generation models using sampling.
|
| 40 |
+
Args:
|
| 41 |
+
sequences (:obj:`jax_xla.DeviceArray` of shape :obj:`(batch_size, max_length)`):
|
| 42 |
+
The generated sequences.
|
| 43 |
+
"""
|
| 44 |
+
|
| 45 |
+
sequences: jax_xla.DeviceArray = None
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
@flax.struct.dataclass
|
| 49 |
+
class FlaxBeamSearchOutput(ModelOutput):
|
| 50 |
+
"""
|
| 51 |
+
Flax Base class for outputs of decoder-only generation models using greedy search.
|
| 52 |
+
Args:
|
| 53 |
+
sequences (:obj:`jax_xla.DeviceArray` of shape :obj:`(batch_size, max_length)`):
|
| 54 |
+
The generated sequences.
|
| 55 |
+
scores (:obj:`jax_xla.DeviceArray` of shape :obj:`(batch_size,)`):
|
| 56 |
+
The scores (log probabilites) of the generated sequences.
|
| 57 |
+
"""
|
| 58 |
+
|
| 59 |
+
sequences: jax_xla.DeviceArray = None
|
| 60 |
+
scores: jax_xla.DeviceArray = None
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
@flax.struct.dataclass
|
| 64 |
+
class GreedyState:
|
| 65 |
+
cur_len: jax_xla.DeviceArray
|
| 66 |
+
sequences: jax_xla.DeviceArray
|
| 67 |
+
running_token: jax_xla.DeviceArray
|
| 68 |
+
is_sent_finished: jax_xla.DeviceArray
|
| 69 |
+
model_kwargs: Dict[str, jax_xla.DeviceArray]
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
@flax.struct.dataclass
|
| 73 |
+
class SampleState:
|
| 74 |
+
cur_len: jax_xla.DeviceArray
|
| 75 |
+
sequences: jax_xla.DeviceArray
|
| 76 |
+
running_token: jax_xla.DeviceArray
|
| 77 |
+
is_sent_finished: jax_xla.DeviceArray
|
| 78 |
+
prng_key: jax_xla.DeviceArray
|
| 79 |
+
model_kwargs: Dict[str, jax_xla.DeviceArray]
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
@flax.struct.dataclass
|
| 83 |
+
class BeamSearchState:
|
| 84 |
+
cur_len: jax_xla.DeviceArray
|
| 85 |
+
running_sequences: jax_xla.DeviceArray
|
| 86 |
+
running_scores: jax_xla.DeviceArray
|
| 87 |
+
sequences: jax_xla.DeviceArray
|
| 88 |
+
scores: jax_xla.DeviceArray
|
| 89 |
+
is_sent_finished: jax_xla.DeviceArray
|
| 90 |
+
model_kwargs: Dict[str, jax_xla.DeviceArray]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
class FlaxCLIPVisionMBartGenerationMixin:
|
| 94 |
+
"""
|
| 95 |
+
A class containing all of the functions supporting generation, to be used as a mixin in
|
| 96 |
+
:class:`~transformers.FlaxPreTrainedModel`.
|
| 97 |
+
"""
|
| 98 |
+
|
| 99 |
+
@staticmethod
|
| 100 |
+
def _run_loop_in_debug(cond_fn, body_fn, init_state):
|
| 101 |
+
"""
|
| 102 |
+
Run generation in untraced mode. This should only be used for debugging purposes.
|
| 103 |
+
"""
|
| 104 |
+
state = init_state
|
| 105 |
+
while cond_fn(state):
|
| 106 |
+
state = body_fn(state)
|
| 107 |
+
return state
|
| 108 |
+
|
| 109 |
+
def _prepare_encoder_decoder_kwargs_for_generation(self, input_ids, model_kwargs):
|
| 110 |
+
encoder_kwargs = {
|
| 111 |
+
argument: value
|
| 112 |
+
for argument, value in model_kwargs.items()
|
| 113 |
+
if not (
|
| 114 |
+
argument.startswith("decoder_") or argument.startswith("cross_attn")
|
| 115 |
+
)
|
| 116 |
+
}
|
| 117 |
+
model_kwargs["encoder_outputs"] = self.encode(
|
| 118 |
+
input_ids, return_dict=True, **encoder_kwargs
|
| 119 |
+
)
|
| 120 |
+
return model_kwargs
|
| 121 |
+
|
| 122 |
+
@staticmethod
|
| 123 |
+
def _expand_to_num_beams(tensor, num_beams):
|
| 124 |
+
return jnp.broadcast_to(
|
| 125 |
+
tensor[:, None], (tensor.shape[0], num_beams) + tensor.shape[1:]
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
def generate(
|
| 129 |
+
self,
|
| 130 |
+
input_ids: jax_xla.DeviceArray,
|
| 131 |
+
max_length: Optional[int] = None,
|
| 132 |
+
pad_token_id: Optional[int] = None,
|
| 133 |
+
bos_token_id: Optional[int] = None,
|
| 134 |
+
eos_token_id: Optional[int] = None,
|
| 135 |
+
decoder_start_token_id: Optional[int] = None,
|
| 136 |
+
do_sample: Optional[bool] = None,
|
| 137 |
+
prng_key: Optional[jax_xla.DeviceArray] = None,
|
| 138 |
+
top_k: Optional[int] = None,
|
| 139 |
+
top_p: Optional[float] = None,
|
| 140 |
+
temperature: Optional[float] = None,
|
| 141 |
+
num_beams: Optional[int] = None,
|
| 142 |
+
no_repeat_ngram_size: Optional[int] = None,
|
| 143 |
+
min_length: Optional[int] = None,
|
| 144 |
+
forced_bos_token_id: Optional[int] = None,
|
| 145 |
+
forced_eos_token_id: Optional[int] = None,
|
| 146 |
+
length_penalty: Optional[float] = None,
|
| 147 |
+
early_stopping: Optional[bool] = None,
|
| 148 |
+
trace: bool = True,
|
| 149 |
+
params: Optional[Dict[str, jax_xla.DeviceArray]] = None,
|
| 150 |
+
**model_kwargs,
|
| 151 |
+
):
|
| 152 |
+
r"""
|
| 153 |
+
Generates sequences for models with a language modeling head. The method currently supports greedy decoding,
|
| 154 |
+
and, multinomial sampling.
|
| 155 |
+
Apart from :obj:`input_ids`, all the arguments below will default to the value of the attribute of the same
|
| 156 |
+
name inside the :class:`~transformers.PretrainedConfig` of the model. The default values indicated are the
|
| 157 |
+
default values of those config.
|
| 158 |
+
Most of these parameters are explained in more detail in `this blog post
|
| 159 |
+
<https://huggingface.co/blog/how-to-generate>`__.
|
| 160 |
+
Parameters:
|
| 161 |
+
input_ids (:obj:`jax_xla.DeviceArray` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
| 162 |
+
The sequence used as a prompt for the generation.
|
| 163 |
+
max_length (:obj:`int`, `optional`, defaults to 20):
|
| 164 |
+
The maximum length of the sequence to be generated.
|
| 165 |
+
do_sample (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
| 166 |
+
Whether or not to use sampling ; use greedy decoding otherwise.
|
| 167 |
+
temperature (:obj:`float`, `optional`, defaults to 1.0):
|
| 168 |
+
The value used to module the next token probabilities.
|
| 169 |
+
top_k (:obj:`int`, `optional`, defaults to 50):
|
| 170 |
+
The number of highest probability vocabulary tokens to keep for top-k-filtering.
|
| 171 |
+
top_p (:obj:`float`, `optional`, defaults to 1.0):
|
| 172 |
+
If set to float < 1, only the most probable tokens with probabilities that add up to :obj:`top_p` or
|
| 173 |
+
higher are kept for generation.
|
| 174 |
+
pad_token_id (:obj:`int`, `optional`):
|
| 175 |
+
The id of the `padding` token.
|
| 176 |
+
bos_token_id (:obj:`int`, `optional`):
|
| 177 |
+
The id of the `beginning-of-sequence` token.
|
| 178 |
+
eos_token_id (:obj:`int`, `optional`):
|
| 179 |
+
The id of the `end-of-sequence` token.
|
| 180 |
+
num_beams (:obj:`int`, `optional`, defaults to 1):
|
| 181 |
+
Number of beams for beam search. 1 means no beam search.
|
| 182 |
+
decoder_start_token_id (:obj:`int`, `optional`):
|
| 183 |
+
If an encoder-decoder model starts decoding with a different token than `bos`, the id of that token.
|
| 184 |
+
trace (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
| 185 |
+
Whether to trace generation. Setting ``trace=False`` should only be used for debugging and will lead to
|
| 186 |
+
a considerably slower runtime.
|
| 187 |
+
params (:obj:`Dict[str, jax_xla.DeviceArray]`, `optional`):
|
| 188 |
+
Optionally the model parameters can be passed. Can be useful for parallelized generation.
|
| 189 |
+
model_kwargs:
|
| 190 |
+
Additional model specific kwargs will be forwarded to the :obj:`forward` function of the model.
|
| 191 |
+
Return:
|
| 192 |
+
:class:`~transformers.file_utils.ModelOutput`.
|
| 193 |
+
Examples::
|
| 194 |
+
>>> from transformers import AutoTokenizer, FlaxAutoModelForCausalLM
|
| 195 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
| 196 |
+
>>> model = FlaxAutoModelForCausalLM.from_pretrained("distilgpt2")
|
| 197 |
+
>>> input_context = "The dog"
|
| 198 |
+
>>> # encode input context
|
| 199 |
+
>>> input_ids = tokenizer(input_context, return_tensors="jax").input_ids
|
| 200 |
+
>>> # generate candidates using sampling
|
| 201 |
+
>>> outputs = model.generate(input_ids=input_ids, max_length=20, top_k=30, do_sample=True)
|
| 202 |
+
>>> print("Generated:", tokenizer.batch_decode(outputs, skip_special_tokens=True))
|
| 203 |
+
"""
|
| 204 |
+
# set init values
|
| 205 |
+
max_length = (
|
| 206 |
+
max_length
|
| 207 |
+
if max_length is not None
|
| 208 |
+
else self.config.mbart_config.max_length
|
| 209 |
+
)
|
| 210 |
+
bos_token_id = (
|
| 211 |
+
bos_token_id
|
| 212 |
+
if bos_token_id is not None
|
| 213 |
+
else self.config.mbart_config.bos_token_id
|
| 214 |
+
)
|
| 215 |
+
pad_token_id = (
|
| 216 |
+
pad_token_id
|
| 217 |
+
if pad_token_id is not None
|
| 218 |
+
else self.config.mbart_config.pad_token_id
|
| 219 |
+
)
|
| 220 |
+
eos_token_id = (
|
| 221 |
+
eos_token_id
|
| 222 |
+
if eos_token_id is not None
|
| 223 |
+
else self.config.mbart_config.eos_token_id
|
| 224 |
+
)
|
| 225 |
+
decoder_start_token_id = (
|
| 226 |
+
decoder_start_token_id
|
| 227 |
+
if decoder_start_token_id
|
| 228 |
+
else self.config.mbart_config.decoder_start_token_id
|
| 229 |
+
)
|
| 230 |
+
prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0)
|
| 231 |
+
|
| 232 |
+
if decoder_start_token_id is None and self.config.is_encoder_decoder:
|
| 233 |
+
raise ValueError(
|
| 234 |
+
"`decoder_start_token_id` has to be defined for encoder-decoder generation."
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
if self.config.is_encoder_decoder:
|
| 238 |
+
# add encoder_outputs to model_kwargs
|
| 239 |
+
model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(
|
| 240 |
+
input_ids, model_kwargs
|
| 241 |
+
)
|
| 242 |
+
# prepare decoder_input_ids for generation
|
| 243 |
+
input_ids = (
|
| 244 |
+
jnp.ones((input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
do_sample = (
|
| 248 |
+
do_sample if do_sample is not None else self.config.mbart_config.do_sample
|
| 249 |
+
)
|
| 250 |
+
num_beams = (
|
| 251 |
+
num_beams if num_beams is not None else self.config.mbart_config.num_beams
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
if not do_sample and num_beams == 1:
|
| 255 |
+
logits_processor = self._get_logits_processor(
|
| 256 |
+
no_repeat_ngram_size,
|
| 257 |
+
min_length,
|
| 258 |
+
max_length,
|
| 259 |
+
eos_token_id,
|
| 260 |
+
forced_bos_token_id,
|
| 261 |
+
forced_eos_token_id,
|
| 262 |
+
)
|
| 263 |
+
return self._greedy_search(
|
| 264 |
+
input_ids,
|
| 265 |
+
max_length,
|
| 266 |
+
pad_token_id,
|
| 267 |
+
eos_token_id,
|
| 268 |
+
logits_processor=logits_processor,
|
| 269 |
+
trace=trace,
|
| 270 |
+
params=params,
|
| 271 |
+
model_kwargs=model_kwargs,
|
| 272 |
+
)
|
| 273 |
+
elif do_sample and num_beams == 1:
|
| 274 |
+
logits_warper = self._get_logits_warper(
|
| 275 |
+
top_k=top_k, top_p=top_p, temperature=temperature
|
| 276 |
+
)
|
| 277 |
+
logits_processor = self._get_logits_processor(
|
| 278 |
+
no_repeat_ngram_size,
|
| 279 |
+
min_length,
|
| 280 |
+
max_length,
|
| 281 |
+
eos_token_id,
|
| 282 |
+
forced_bos_token_id,
|
| 283 |
+
forced_eos_token_id,
|
| 284 |
+
)
|
| 285 |
+
return self._sample(
|
| 286 |
+
input_ids,
|
| 287 |
+
max_length,
|
| 288 |
+
pad_token_id,
|
| 289 |
+
eos_token_id,
|
| 290 |
+
prng_key,
|
| 291 |
+
logits_warper=logits_warper,
|
| 292 |
+
logits_processor=logits_processor,
|
| 293 |
+
trace=trace,
|
| 294 |
+
params=params,
|
| 295 |
+
model_kwargs=model_kwargs,
|
| 296 |
+
)
|
| 297 |
+
elif not do_sample and num_beams > 1:
|
| 298 |
+
# broadcast input_ids & encoder_outputs
|
| 299 |
+
input_ids = self._expand_to_num_beams(input_ids, num_beams=num_beams)
|
| 300 |
+
|
| 301 |
+
if "encoder_outputs" in model_kwargs:
|
| 302 |
+
model_kwargs["encoder_outputs"][
|
| 303 |
+
"last_hidden_state"
|
| 304 |
+
] = self._expand_to_num_beams(
|
| 305 |
+
model_kwargs["encoder_outputs"]["last_hidden_state"],
|
| 306 |
+
num_beams=num_beams,
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
if "attention_mask" in model_kwargs:
|
| 310 |
+
model_kwargs["attention_mask"] = self._expand_to_num_beams(
|
| 311 |
+
model_kwargs["attention_mask"], num_beams=num_beams
|
| 312 |
+
)
|
| 313 |
+
|
| 314 |
+
logits_processor = self._get_logits_processor(
|
| 315 |
+
no_repeat_ngram_size,
|
| 316 |
+
min_length,
|
| 317 |
+
max_length,
|
| 318 |
+
eos_token_id,
|
| 319 |
+
forced_bos_token_id,
|
| 320 |
+
forced_eos_token_id,
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
return self._beam_search(
|
| 324 |
+
input_ids,
|
| 325 |
+
max_length,
|
| 326 |
+
pad_token_id,
|
| 327 |
+
eos_token_id,
|
| 328 |
+
length_penalty=length_penalty,
|
| 329 |
+
early_stopping=early_stopping,
|
| 330 |
+
logits_processor=logits_processor,
|
| 331 |
+
trace=trace,
|
| 332 |
+
params=params,
|
| 333 |
+
model_kwargs=model_kwargs,
|
| 334 |
+
)
|
| 335 |
+
else:
|
| 336 |
+
raise NotImplementedError("`Beam sampling is currently not implemented.")
|
| 337 |
+
|
| 338 |
+
def _get_logits_warper(
|
| 339 |
+
self, top_k: int = None, top_p: float = None, temperature: float = None
|
| 340 |
+
) -> FlaxLogitsProcessorList:
|
| 341 |
+
"""
|
| 342 |
+
This class returns a :obj:`~transformers.FlaxLogitsProcessorList` list object that contains all relevant
|
| 343 |
+
:obj:`~transformers.FlaxLogitsWarper` instances used for multinomial sampling.
|
| 344 |
+
"""
|
| 345 |
+
|
| 346 |
+
# init warp parameters
|
| 347 |
+
top_k = top_k if top_k is not None else self.config.mbart_config.top_k
|
| 348 |
+
top_p = top_p if top_p is not None else self.config.mbart_config.top_p
|
| 349 |
+
temperature = (
|
| 350 |
+
temperature
|
| 351 |
+
if temperature is not None
|
| 352 |
+
else self.config.mbart_config.temperature
|
| 353 |
+
)
|
| 354 |
+
# instantiate warpers list
|
| 355 |
+
warpers = FlaxLogitsProcessorList()
|
| 356 |
+
|
| 357 |
+
# the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files
|
| 358 |
+
# all samplers can be found in `generation_utils_samplers.py`
|
| 359 |
+
if temperature is not None and temperature != 1.0:
|
| 360 |
+
warpers.append(FlaxTemperatureLogitsWarper(temperature))
|
| 361 |
+
if top_k is not None and top_k != 0:
|
| 362 |
+
warpers.append(FlaxTopKLogitsWarper(top_k=top_k, min_tokens_to_keep=1))
|
| 363 |
+
if top_p is not None and top_p < 1.0:
|
| 364 |
+
warpers.append(FlaxTopPLogitsWarper(top_p=top_p, min_tokens_to_keep=1))
|
| 365 |
+
|
| 366 |
+
return warpers
|
| 367 |
+
|
| 368 |
+
def _get_logits_processor(
|
| 369 |
+
self,
|
| 370 |
+
no_repeat_ngram_size: int,
|
| 371 |
+
min_length: int,
|
| 372 |
+
max_length: int,
|
| 373 |
+
eos_token_id: int,
|
| 374 |
+
forced_bos_token_id: int,
|
| 375 |
+
forced_eos_token_id: int,
|
| 376 |
+
) -> FlaxLogitsProcessorList:
|
| 377 |
+
"""
|
| 378 |
+
This class returns a :obj:`~transformers.FlaxLogitsProcessorList` list object that contains all relevant
|
| 379 |
+
:obj:`~transformers.FlaxLogitsProcessor` instances used to modify the scores of the language model head.
|
| 380 |
+
"""
|
| 381 |
+
processors = FlaxLogitsProcessorList()
|
| 382 |
+
|
| 383 |
+
# init warp parameters
|
| 384 |
+
no_repeat_ngram_size = (
|
| 385 |
+
no_repeat_ngram_size
|
| 386 |
+
if no_repeat_ngram_size is not None
|
| 387 |
+
else self.config.mbart_config.no_repeat_ngram_size
|
| 388 |
+
)
|
| 389 |
+
min_length = (
|
| 390 |
+
min_length
|
| 391 |
+
if min_length is not None
|
| 392 |
+
else self.config.mbart_config.min_length
|
| 393 |
+
)
|
| 394 |
+
eos_token_id = (
|
| 395 |
+
eos_token_id
|
| 396 |
+
if eos_token_id is not None
|
| 397 |
+
else self.config.mbart_config.eos_token_id
|
| 398 |
+
)
|
| 399 |
+
forced_bos_token_id = (
|
| 400 |
+
forced_bos_token_id
|
| 401 |
+
if forced_bos_token_id is not None
|
| 402 |
+
else self.config.mbart_config.forced_bos_token_id
|
| 403 |
+
)
|
| 404 |
+
forced_eos_token_id = (
|
| 405 |
+
forced_eos_token_id
|
| 406 |
+
if forced_eos_token_id is not None
|
| 407 |
+
else self.config.mbart_config.forced_eos_token_id
|
| 408 |
+
)
|
| 409 |
+
|
| 410 |
+
# the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files
|
| 411 |
+
# all samplers can be found in `generation_utils_samplers.py`
|
| 412 |
+
if min_length is not None and eos_token_id is not None and min_length > -1:
|
| 413 |
+
processors.append(FlaxMinLengthLogitsProcessor(min_length, eos_token_id))
|
| 414 |
+
if forced_bos_token_id is not None:
|
| 415 |
+
processors.append(FlaxForcedBOSTokenLogitsProcessor(forced_bos_token_id))
|
| 416 |
+
if forced_eos_token_id is not None:
|
| 417 |
+
processors.append(
|
| 418 |
+
FlaxForcedEOSTokenLogitsProcessor(max_length, forced_eos_token_id)
|
| 419 |
+
)
|
| 420 |
+
return processors
|
| 421 |
+
|
| 422 |
+
def _greedy_search(
|
| 423 |
+
self,
|
| 424 |
+
input_ids: None,
|
| 425 |
+
max_length: Optional[int] = None,
|
| 426 |
+
pad_token_id: Optional[int] = None,
|
| 427 |
+
eos_token_id: Optional[int] = None,
|
| 428 |
+
logits_processor: Optional[FlaxLogitsProcessorList] = None,
|
| 429 |
+
trace: bool = True,
|
| 430 |
+
params: Optional[Dict[str, jax_xla.DeviceArray]] = None,
|
| 431 |
+
model_kwargs: Optional[Dict[str, jax_xla.DeviceArray]] = None,
|
| 432 |
+
):
|
| 433 |
+
# init values
|
| 434 |
+
max_length = (
|
| 435 |
+
max_length
|
| 436 |
+
if max_length is not None
|
| 437 |
+
else self.config.mbart_config.max_length
|
| 438 |
+
)
|
| 439 |
+
pad_token_id = (
|
| 440 |
+
pad_token_id
|
| 441 |
+
if pad_token_id is not None
|
| 442 |
+
else self.config.mbart_config.pad_token_id
|
| 443 |
+
)
|
| 444 |
+
eos_token_id = (
|
| 445 |
+
eos_token_id
|
| 446 |
+
if eos_token_id is not None
|
| 447 |
+
else self.config.mbart_config.eos_token_id
|
| 448 |
+
)
|
| 449 |
+
|
| 450 |
+
batch_size, cur_len = input_ids.shape
|
| 451 |
+
|
| 452 |
+
eos_token_id = jnp.array(eos_token_id)
|
| 453 |
+
pad_token_id = jnp.array(pad_token_id)
|
| 454 |
+
cur_len = jnp.array(cur_len)
|
| 455 |
+
|
| 456 |
+
# per batch-item holding current token in loop.
|
| 457 |
+
sequences = jnp.full((batch_size, max_length), pad_token_id, dtype=jnp.int32)
|
| 458 |
+
sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0))
|
| 459 |
+
|
| 460 |
+
# per batch-item state bit indicating if sentence has finished.
|
| 461 |
+
is_sent_finished = jnp.zeros((batch_size,), dtype=jnp.bool_)
|
| 462 |
+
|
| 463 |
+
# For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop
|
| 464 |
+
# and pass it the `encoder_outputs`, which are part of the `model_kwargs`.
|
| 465 |
+
model = self.decode if self.config.is_encoder_decoder else self
|
| 466 |
+
# initialize model specific kwargs
|
| 467 |
+
model_kwargs = self.prepare_inputs_for_generation(
|
| 468 |
+
input_ids, max_length, **model_kwargs
|
| 469 |
+
)
|
| 470 |
+
|
| 471 |
+
# initialize state
|
| 472 |
+
state = GreedyState(
|
| 473 |
+
cur_len=cur_len,
|
| 474 |
+
sequences=sequences,
|
| 475 |
+
running_token=input_ids,
|
| 476 |
+
is_sent_finished=is_sent_finished,
|
| 477 |
+
model_kwargs=model_kwargs,
|
| 478 |
+
)
|
| 479 |
+
|
| 480 |
+
def greedy_search_cond_fn(state):
|
| 481 |
+
"""state termination condition fn."""
|
| 482 |
+
has_reached_max_length = state.cur_len == max_length
|
| 483 |
+
all_sequence_finished = jnp.all(state.is_sent_finished)
|
| 484 |
+
finish_generation = jnp.logical_or(
|
| 485 |
+
has_reached_max_length, all_sequence_finished
|
| 486 |
+
)
|
| 487 |
+
return ~finish_generation
|
| 488 |
+
|
| 489 |
+
def greedy_search_body_fn(state):
|
| 490 |
+
"""state update fn."""
|
| 491 |
+
model_outputs = model(
|
| 492 |
+
state.running_token, params=params, **state.model_kwargs
|
| 493 |
+
)
|
| 494 |
+
logits = model_outputs.logits[:, -1]
|
| 495 |
+
|
| 496 |
+
# apply min_length, ...
|
| 497 |
+
logits = logits_processor(state.sequences, logits, state.cur_len)
|
| 498 |
+
|
| 499 |
+
next_token = jnp.argmax(logits, axis=-1)
|
| 500 |
+
|
| 501 |
+
next_is_sent_finished = state.is_sent_finished | (
|
| 502 |
+
next_token == eos_token_id
|
| 503 |
+
)
|
| 504 |
+
next_token = (
|
| 505 |
+
next_token * ~next_is_sent_finished
|
| 506 |
+
+ pad_token_id * next_is_sent_finished
|
| 507 |
+
)
|
| 508 |
+
next_token = next_token[:, None]
|
| 509 |
+
|
| 510 |
+
next_sequences = lax.dynamic_update_slice(
|
| 511 |
+
state.sequences, next_token, (0, state.cur_len)
|
| 512 |
+
)
|
| 513 |
+
next_model_kwargs = self.update_inputs_for_generation(
|
| 514 |
+
model_outputs, state.model_kwargs
|
| 515 |
+
)
|
| 516 |
+
return GreedyState(
|
| 517 |
+
cur_len=state.cur_len + 1,
|
| 518 |
+
sequences=next_sequences,
|
| 519 |
+
running_token=next_token,
|
| 520 |
+
is_sent_finished=next_is_sent_finished,
|
| 521 |
+
model_kwargs=next_model_kwargs,
|
| 522 |
+
)
|
| 523 |
+
|
| 524 |
+
# The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU
|
| 525 |
+
if input_ids.shape[1] > 1:
|
| 526 |
+
state = greedy_search_body_fn(state)
|
| 527 |
+
|
| 528 |
+
if not trace:
|
| 529 |
+
state = self._run_loop_in_debug(
|
| 530 |
+
greedy_search_cond_fn, greedy_search_body_fn, state
|
| 531 |
+
)
|
| 532 |
+
else:
|
| 533 |
+
state = lax.while_loop(greedy_search_cond_fn, greedy_search_body_fn, state)
|
| 534 |
+
|
| 535 |
+
return FlaxGreedySearchOutput(sequences=state.sequences)
|
| 536 |
+
|
| 537 |
+
def _sample(
|
| 538 |
+
self,
|
| 539 |
+
input_ids: None,
|
| 540 |
+
max_length: Optional[int] = None,
|
| 541 |
+
pad_token_id: Optional[int] = None,
|
| 542 |
+
eos_token_id: Optional[int] = None,
|
| 543 |
+
prng_key: Optional[jax_xla.DeviceArray] = None,
|
| 544 |
+
logits_processor: Optional[FlaxLogitsProcessorList] = None,
|
| 545 |
+
logits_warper: Optional[FlaxLogitsProcessorList] = None,
|
| 546 |
+
trace: bool = True,
|
| 547 |
+
params: Optional[Dict[str, jax_xla.DeviceArray]] = None,
|
| 548 |
+
model_kwargs: Optional[Dict[str, jax_xla.DeviceArray]] = None,
|
| 549 |
+
):
|
| 550 |
+
# init values
|
| 551 |
+
max_length = (
|
| 552 |
+
max_length
|
| 553 |
+
if max_length is not None
|
| 554 |
+
else self.config.mbart_config.max_length
|
| 555 |
+
)
|
| 556 |
+
pad_token_id = (
|
| 557 |
+
pad_token_id
|
| 558 |
+
if pad_token_id is not None
|
| 559 |
+
else self.config.mbart_config.pad_token_id
|
| 560 |
+
)
|
| 561 |
+
eos_token_id = (
|
| 562 |
+
eos_token_id
|
| 563 |
+
if eos_token_id is not None
|
| 564 |
+
else self.config.mbart_config.eos_token_id
|
| 565 |
+
)
|
| 566 |
+
prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0)
|
| 567 |
+
|
| 568 |
+
batch_size, cur_len = input_ids.shape
|
| 569 |
+
|
| 570 |
+
eos_token_id = jnp.array(eos_token_id)
|
| 571 |
+
pad_token_id = jnp.array(pad_token_id)
|
| 572 |
+
cur_len = jnp.array(cur_len)
|
| 573 |
+
|
| 574 |
+
# per batch-item holding current token in loop.
|
| 575 |
+
sequences = jnp.full((batch_size, max_length), pad_token_id, dtype=jnp.int32)
|
| 576 |
+
sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0))
|
| 577 |
+
|
| 578 |
+
# per batch-item state bit indicating if sentence has finished.
|
| 579 |
+
is_sent_finished = jnp.zeros((batch_size,), dtype=jnp.bool_)
|
| 580 |
+
|
| 581 |
+
# For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop
|
| 582 |
+
# and pass it the `encoder_outputs`, which are part of the `model_kwargs`.
|
| 583 |
+
model = self.decode if self.config.is_encoder_decoder else self
|
| 584 |
+
|
| 585 |
+
# initialize model specific kwargs
|
| 586 |
+
model_kwargs = self.prepare_inputs_for_generation(
|
| 587 |
+
input_ids, max_length, **model_kwargs
|
| 588 |
+
)
|
| 589 |
+
|
| 590 |
+
# initialize state
|
| 591 |
+
state = SampleState(
|
| 592 |
+
cur_len=cur_len,
|
| 593 |
+
sequences=sequences,
|
| 594 |
+
running_token=input_ids,
|
| 595 |
+
is_sent_finished=is_sent_finished,
|
| 596 |
+
prng_key=prng_key,
|
| 597 |
+
model_kwargs=model_kwargs,
|
| 598 |
+
)
|
| 599 |
+
|
| 600 |
+
def sample_search_cond_fn(state):
|
| 601 |
+
"""state termination condition fn."""
|
| 602 |
+
has_reached_max_length = state.cur_len == max_length
|
| 603 |
+
all_sequence_finished = jnp.all(state.is_sent_finished)
|
| 604 |
+
finish_generation = jnp.logical_or(
|
| 605 |
+
has_reached_max_length, all_sequence_finished
|
| 606 |
+
)
|
| 607 |
+
return ~finish_generation
|
| 608 |
+
|
| 609 |
+
def sample_search_body_fn(state):
|
| 610 |
+
"""state update fn."""
|
| 611 |
+
prng_key, prng_key_next = jax.random.split(state.prng_key)
|
| 612 |
+
model_outputs = model(
|
| 613 |
+
state.running_token, params=params, **state.model_kwargs
|
| 614 |
+
)
|
| 615 |
+
|
| 616 |
+
logits = model_outputs.logits[:, -1]
|
| 617 |
+
|
| 618 |
+
# apply min_length, ...
|
| 619 |
+
logits = logits_processor(state.sequences, logits, state.cur_len)
|
| 620 |
+
# apply top_k, top_k, temperature
|
| 621 |
+
logits = logits_warper(logits, logits, state.cur_len)
|
| 622 |
+
|
| 623 |
+
next_token = jax.random.categorical(
|
| 624 |
+
prng_key, model_outputs.logits[:, -1], axis=-1
|
| 625 |
+
)
|
| 626 |
+
|
| 627 |
+
next_is_sent_finished = state.is_sent_finished | (
|
| 628 |
+
next_token == eos_token_id
|
| 629 |
+
)
|
| 630 |
+
next_token = (
|
| 631 |
+
next_token * ~next_is_sent_finished
|
| 632 |
+
+ pad_token_id * next_is_sent_finished
|
| 633 |
+
)
|
| 634 |
+
next_token = next_token[:, None]
|
| 635 |
+
|
| 636 |
+
next_sequences = lax.dynamic_update_slice(
|
| 637 |
+
state.sequences, next_token, (0, state.cur_len)
|
| 638 |
+
)
|
| 639 |
+
next_model_kwargs = self.update_inputs_for_generation(
|
| 640 |
+
model_outputs, state.model_kwargs
|
| 641 |
+
)
|
| 642 |
+
|
| 643 |
+
return SampleState(
|
| 644 |
+
cur_len=state.cur_len + 1,
|
| 645 |
+
sequences=next_sequences,
|
| 646 |
+
running_token=next_token,
|
| 647 |
+
is_sent_finished=next_is_sent_finished,
|
| 648 |
+
model_kwargs=next_model_kwargs,
|
| 649 |
+
prng_key=prng_key_next,
|
| 650 |
+
)
|
| 651 |
+
|
| 652 |
+
# The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU
|
| 653 |
+
if input_ids.shape[1] > 1:
|
| 654 |
+
state = sample_search_body_fn(state)
|
| 655 |
+
|
| 656 |
+
if not trace:
|
| 657 |
+
state = self._run_loop_in_debug(
|
| 658 |
+
sample_search_cond_fn, sample_search_body_fn, state
|
| 659 |
+
)
|
| 660 |
+
else:
|
| 661 |
+
state = lax.while_loop(sample_search_cond_fn, sample_search_body_fn, state)
|
| 662 |
+
|
| 663 |
+
return FlaxSampleOutput(sequences=state.sequences)
|
| 664 |
+
|
| 665 |
+
def _beam_search(
|
| 666 |
+
self,
|
| 667 |
+
input_ids: None,
|
| 668 |
+
max_length: Optional[int] = None,
|
| 669 |
+
pad_token_id: Optional[int] = None,
|
| 670 |
+
eos_token_id: Optional[int] = None,
|
| 671 |
+
length_penalty: Optional[float] = None,
|
| 672 |
+
early_stopping: Optional[bool] = None,
|
| 673 |
+
logits_processor: Optional[FlaxLogitsProcessorList] = None,
|
| 674 |
+
trace: bool = True,
|
| 675 |
+
params: Optional[Dict[str, jax_xla.DeviceArray]] = None,
|
| 676 |
+
model_kwargs: Optional[Dict[str, jax_xla.DeviceArray]] = None,
|
| 677 |
+
):
|
| 678 |
+
"""
|
| 679 |
+
This beam search function is heavily inspired by Flax's official example:
|
| 680 |
+
https://github.com/google/flax/blob/master/examples/wmt/train.py#L254
|
| 681 |
+
"""
|
| 682 |
+
|
| 683 |
+
def flatten_beam_dim(tensor):
|
| 684 |
+
"""Flattens the first two dimensions of a non-scalar array."""
|
| 685 |
+
# ignore scalars (e.g. cache index)
|
| 686 |
+
if tensor.ndim == 0:
|
| 687 |
+
return tensor
|
| 688 |
+
return tensor.reshape(
|
| 689 |
+
(tensor.shape[0] * tensor.shape[1],) + tensor.shape[2:]
|
| 690 |
+
)
|
| 691 |
+
|
| 692 |
+
def unflatten_beam_dim(tensor, batch_size, num_beams):
|
| 693 |
+
"""Unflattens the first, flat batch*beam dimension of a non-scalar array."""
|
| 694 |
+
# ignore scalars (e.g. cache index)
|
| 695 |
+
if tensor.ndim == 0:
|
| 696 |
+
return tensor
|
| 697 |
+
return tensor.reshape((batch_size, num_beams) + tensor.shape[1:])
|
| 698 |
+
|
| 699 |
+
def gather_beams(nested, beam_indices, batch_size, new_num_beams):
|
| 700 |
+
"""
|
| 701 |
+
Gathers the beam slices indexed by beam_indices into new beam array.
|
| 702 |
+
"""
|
| 703 |
+
batch_indices = jnp.reshape(
|
| 704 |
+
jnp.arange(batch_size * new_num_beams) // new_num_beams,
|
| 705 |
+
(batch_size, new_num_beams),
|
| 706 |
+
)
|
| 707 |
+
|
| 708 |
+
def gather_fn(tensor):
|
| 709 |
+
# ignore scalars (e.g. cache index)
|
| 710 |
+
if tensor.ndim == 0:
|
| 711 |
+
return tensor
|
| 712 |
+
else:
|
| 713 |
+
return tensor[batch_indices, beam_indices]
|
| 714 |
+
|
| 715 |
+
return jax.tree_map(gather_fn, nested)
|
| 716 |
+
|
| 717 |
+
# init values
|
| 718 |
+
max_length = (
|
| 719 |
+
max_length
|
| 720 |
+
if max_length is not None
|
| 721 |
+
else self.config.mbart_config.max_length
|
| 722 |
+
)
|
| 723 |
+
pad_token_id = (
|
| 724 |
+
pad_token_id
|
| 725 |
+
if pad_token_id is not None
|
| 726 |
+
else self.config.mbart_config.pad_token_id
|
| 727 |
+
)
|
| 728 |
+
eos_token_id = (
|
| 729 |
+
eos_token_id
|
| 730 |
+
if eos_token_id is not None
|
| 731 |
+
else self.config.mbart_config.eos_token_id
|
| 732 |
+
)
|
| 733 |
+
length_penalty = (
|
| 734 |
+
length_penalty
|
| 735 |
+
if length_penalty is not None
|
| 736 |
+
else self.config.mbart_config.length_penalty
|
| 737 |
+
)
|
| 738 |
+
early_stopping = (
|
| 739 |
+
early_stopping
|
| 740 |
+
if early_stopping is not None
|
| 741 |
+
else self.config.mbart_config.early_stopping
|
| 742 |
+
)
|
| 743 |
+
|
| 744 |
+
batch_size, num_beams, cur_len = input_ids.shape
|
| 745 |
+
|
| 746 |
+
eos_token_id = jnp.array(eos_token_id)
|
| 747 |
+
pad_token_id = jnp.array(pad_token_id)
|
| 748 |
+
cur_len = jnp.array(cur_len)
|
| 749 |
+
|
| 750 |
+
# per batch,beam-item holding current token in loop.
|
| 751 |
+
sequences = jnp.full(
|
| 752 |
+
(batch_size, num_beams, max_length), pad_token_id, dtype=jnp.int32
|
| 753 |
+
)
|
| 754 |
+
running_sequences = jnp.full(
|
| 755 |
+
(batch_size, num_beams, max_length), pad_token_id, dtype=jnp.int32
|
| 756 |
+
)
|
| 757 |
+
running_sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0, 0))
|
| 758 |
+
|
| 759 |
+
# per batch,beam-item state bit indicating if sentence has finished.
|
| 760 |
+
is_sent_finished = jnp.zeros((batch_size, num_beams), dtype=jnp.bool_)
|
| 761 |
+
|
| 762 |
+
# per batch,beam-item score, logprobs
|
| 763 |
+
running_scores = jnp.tile(
|
| 764 |
+
jnp.array([0.0] + [np.array(-1.0e7)] * (num_beams - 1)), [batch_size, 1]
|
| 765 |
+
)
|
| 766 |
+
scores = jnp.ones((batch_size, num_beams)) * np.array(-1.0e7)
|
| 767 |
+
|
| 768 |
+
# For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop
|
| 769 |
+
# and pass it the `encoder_outputs`, which are part of the `model_kwargs`.
|
| 770 |
+
model = self.decode if self.config.is_encoder_decoder else self
|
| 771 |
+
|
| 772 |
+
# flatten beam dim
|
| 773 |
+
if "encoder_outputs" in model_kwargs:
|
| 774 |
+
model_kwargs["encoder_outputs"]["last_hidden_state"] = flatten_beam_dim(
|
| 775 |
+
model_kwargs["encoder_outputs"]["last_hidden_state"]
|
| 776 |
+
)
|
| 777 |
+
if "attention_mask" in model_kwargs:
|
| 778 |
+
model_kwargs["attention_mask"] = flatten_beam_dim(
|
| 779 |
+
model_kwargs["attention_mask"]
|
| 780 |
+
)
|
| 781 |
+
|
| 782 |
+
# initialize model specific kwargs
|
| 783 |
+
model_kwargs = self.prepare_inputs_for_generation(
|
| 784 |
+
flatten_beam_dim(input_ids), max_length, **model_kwargs
|
| 785 |
+
)
|
| 786 |
+
|
| 787 |
+
# initialize state
|
| 788 |
+
state = BeamSearchState(
|
| 789 |
+
cur_len=cur_len,
|
| 790 |
+
running_sequences=running_sequences,
|
| 791 |
+
running_scores=running_scores,
|
| 792 |
+
sequences=sequences,
|
| 793 |
+
scores=scores,
|
| 794 |
+
is_sent_finished=is_sent_finished,
|
| 795 |
+
model_kwargs=model_kwargs,
|
| 796 |
+
)
|
| 797 |
+
|
| 798 |
+
def beam_search_cond_fn(state):
|
| 799 |
+
"""beam search state termination condition fn."""
|
| 800 |
+
|
| 801 |
+
# 1. is less than max length?
|
| 802 |
+
not_max_length_yet = state.cur_len < max_length
|
| 803 |
+
|
| 804 |
+
# 2. can the new beams still improve?
|
| 805 |
+
best_running_score = state.running_scores[:, -1:] / (
|
| 806 |
+
max_length ** length_penalty
|
| 807 |
+
)
|
| 808 |
+
worst_finished_score = jnp.where(
|
| 809 |
+
state.is_sent_finished,
|
| 810 |
+
jnp.min(state.scores, axis=1, keepdims=True),
|
| 811 |
+
np.array(-1.0e7),
|
| 812 |
+
)
|
| 813 |
+
improvement_still_possible = jnp.all(
|
| 814 |
+
worst_finished_score < best_running_score
|
| 815 |
+
)
|
| 816 |
+
|
| 817 |
+
# 3. is there still a beam that has not finished?
|
| 818 |
+
still_open_beam = ~(jnp.all(state.is_sent_finished) & early_stopping)
|
| 819 |
+
|
| 820 |
+
return not_max_length_yet & still_open_beam & improvement_still_possible
|
| 821 |
+
|
| 822 |
+
def beam_search_body_fn(state):
|
| 823 |
+
"""beam search state update fn."""
|
| 824 |
+
# 1. Forward current tokens
|
| 825 |
+
# Collect the current position slice along length to feed the fast
|
| 826 |
+
# autoregressive decoder model. Flatten the beam dimension into batch
|
| 827 |
+
# dimension for feeding into the model.
|
| 828 |
+
# unflatten beam dimension
|
| 829 |
+
# Unflatten beam dimension in attention cache arrays
|
| 830 |
+
input_token = flatten_beam_dim(
|
| 831 |
+
lax.dynamic_slice(
|
| 832 |
+
state.running_sequences,
|
| 833 |
+
(0, 0, state.cur_len - 1),
|
| 834 |
+
(batch_size, num_beams, 1),
|
| 835 |
+
)
|
| 836 |
+
)
|
| 837 |
+
model_outputs = model(input_token, params=params, **state.model_kwargs)
|
| 838 |
+
logits = unflatten_beam_dim(
|
| 839 |
+
model_outputs.logits[:, 0], batch_size, num_beams
|
| 840 |
+
)
|
| 841 |
+
cache = jax.tree_map(
|
| 842 |
+
lambda tensor: unflatten_beam_dim(tensor, batch_size, num_beams),
|
| 843 |
+
model_outputs.past_key_values,
|
| 844 |
+
)
|
| 845 |
+
|
| 846 |
+
# 2. Compute log probs
|
| 847 |
+
# get log probabilities from logits,
|
| 848 |
+
# process logits with processors (*e.g.* min_length, ...), and
|
| 849 |
+
# add new logprobs to existing running logprobs scores.
|
| 850 |
+
log_probs = jax.nn.log_softmax(logits)
|
| 851 |
+
log_probs = logits_processor(
|
| 852 |
+
flatten_beam_dim(running_sequences),
|
| 853 |
+
flatten_beam_dim(log_probs),
|
| 854 |
+
state.cur_len,
|
| 855 |
+
)
|
| 856 |
+
log_probs = unflatten_beam_dim(log_probs, batch_size, num_beams)
|
| 857 |
+
log_probs = log_probs + jnp.expand_dims(state.running_scores, axis=2)
|
| 858 |
+
vocab_size = log_probs.shape[2]
|
| 859 |
+
log_probs = log_probs.reshape((batch_size, num_beams * vocab_size))
|
| 860 |
+
|
| 861 |
+
# 3. Retrieve top-K
|
| 862 |
+
# Each item in batch has num_beams * vocab_size candidate sequences.
|
| 863 |
+
# For each item, get the top 2*k candidates with the highest log-
|
| 864 |
+
# probabilities. We gather the top 2*K beams here so that even if the best
|
| 865 |
+
# K sequences reach EOS simultaneously, we have another K sequences
|
| 866 |
+
# remaining to continue the live beam search.
|
| 867 |
+
# Gather the top 2*K scores from _all_ beams.
|
| 868 |
+
# Gather 2*k top beams.
|
| 869 |
+
# Recover the beam index by floor division.
|
| 870 |
+
# Recover token id by modulo division and expand Id array for broadcasting.
|
| 871 |
+
# Update sequences for the 2*K top-k new sequences.
|
| 872 |
+
beams_to_keep = 2 * num_beams
|
| 873 |
+
topk_log_probs, topk_indices = lax.top_k(log_probs, k=beams_to_keep)
|
| 874 |
+
topk_beam_indices = topk_indices // vocab_size
|
| 875 |
+
topk_running_sequences = gather_beams(
|
| 876 |
+
state.running_sequences, topk_beam_indices, batch_size, beams_to_keep
|
| 877 |
+
)
|
| 878 |
+
topk_ids = jnp.expand_dims(topk_indices % vocab_size, axis=2)
|
| 879 |
+
topk_sequences = lax.dynamic_update_slice(
|
| 880 |
+
topk_running_sequences, topk_ids, (0, 0, state.cur_len)
|
| 881 |
+
)
|
| 882 |
+
|
| 883 |
+
# 4. Check which sequences have ended
|
| 884 |
+
# Update current sequences:
|
| 885 |
+
# Did any of these sequences reach an end marker?
|
| 886 |
+
# To prevent these just finished sequences from being added to the current sequences
|
| 887 |
+
# set of active beam search sequences, set their log probs to a very large
|
| 888 |
+
# negative value.
|
| 889 |
+
did_topk_just_finished = topk_sequences[:, :, state.cur_len] == eos_token_id
|
| 890 |
+
topk_log_probs = topk_log_probs + did_topk_just_finished * np.array(-1.0e7)
|
| 891 |
+
|
| 892 |
+
# 5. Get running sequences scores for next
|
| 893 |
+
# Determine the top k beam indices (from top 2*k beams) from log probs
|
| 894 |
+
# and gather top k beams (from top 2*k beams).
|
| 895 |
+
next_topk_indices = jnp.flip(
|
| 896 |
+
lax.top_k(topk_log_probs, k=num_beams)[1], axis=1
|
| 897 |
+
)
|
| 898 |
+
next_running_sequences, next_running_scores = gather_beams(
|
| 899 |
+
[topk_sequences, topk_log_probs],
|
| 900 |
+
next_topk_indices,
|
| 901 |
+
batch_size,
|
| 902 |
+
num_beams,
|
| 903 |
+
)
|
| 904 |
+
|
| 905 |
+
# 6. Process topk logits
|
| 906 |
+
# Further process log probs:
|
| 907 |
+
# - add length penalty
|
| 908 |
+
# - make sure no scores can be added anymore if beam is full
|
| 909 |
+
# - make sure still running sequences cannot be chosen as finalized beam
|
| 910 |
+
topk_log_probs = topk_log_probs / (state.cur_len ** length_penalty)
|
| 911 |
+
beams_in_batch_are_full = (
|
| 912 |
+
jnp.broadcast_to(
|
| 913 |
+
state.is_sent_finished.all(axis=-1, keepdims=True),
|
| 914 |
+
did_topk_just_finished.shape,
|
| 915 |
+
)
|
| 916 |
+
& early_stopping
|
| 917 |
+
)
|
| 918 |
+
add_penalty = ~did_topk_just_finished | beams_in_batch_are_full
|
| 919 |
+
topk_log_probs += add_penalty * np.array(-1.0e7)
|
| 920 |
+
|
| 921 |
+
# 7. Get scores, sequences, is sentence finished for next.
|
| 922 |
+
# Combine sequences, scores, and flags along the beam dimension and compare
|
| 923 |
+
# new finished sequence scores to existing finished scores and select the
|
| 924 |
+
# best from the new set of beams
|
| 925 |
+
merged_sequences = jnp.concatenate(
|
| 926 |
+
[state.sequences, topk_sequences], axis=1
|
| 927 |
+
)
|
| 928 |
+
merged_scores = jnp.concatenate([state.scores, topk_log_probs], axis=1)
|
| 929 |
+
merged_is_sent_finished = jnp.concatenate(
|
| 930 |
+
[state.is_sent_finished, did_topk_just_finished], axis=1
|
| 931 |
+
)
|
| 932 |
+
topk_merged_indices = jnp.flip(
|
| 933 |
+
lax.top_k(merged_scores, k=num_beams)[1], axis=1
|
| 934 |
+
)
|
| 935 |
+
next_sequences, next_scores, next_is_sent_finished = gather_beams(
|
| 936 |
+
[merged_sequences, merged_scores, merged_is_sent_finished],
|
| 937 |
+
topk_merged_indices,
|
| 938 |
+
batch_size,
|
| 939 |
+
num_beams,
|
| 940 |
+
)
|
| 941 |
+
|
| 942 |
+
# 8. Update model kwargs.
|
| 943 |
+
# Determine the top k beam indices from the original set of all beams.
|
| 944 |
+
# With these, gather the top k beam-associated caches.
|
| 945 |
+
next_running_indices = gather_beams(
|
| 946 |
+
topk_beam_indices, next_topk_indices, batch_size, num_beams
|
| 947 |
+
)
|
| 948 |
+
next_cache = gather_beams(
|
| 949 |
+
cache, next_running_indices, batch_size, num_beams
|
| 950 |
+
)
|
| 951 |
+
model_outputs["past_key_values"] = jax.tree_map(
|
| 952 |
+
lambda x: flatten_beam_dim(x), next_cache
|
| 953 |
+
)
|
| 954 |
+
next_model_kwargs = self.update_inputs_for_generation(
|
| 955 |
+
model_outputs, state.model_kwargs
|
| 956 |
+
)
|
| 957 |
+
|
| 958 |
+
return BeamSearchState(
|
| 959 |
+
cur_len=state.cur_len + 1,
|
| 960 |
+
running_scores=next_running_scores,
|
| 961 |
+
running_sequences=next_running_sequences,
|
| 962 |
+
scores=next_scores,
|
| 963 |
+
sequences=next_sequences,
|
| 964 |
+
is_sent_finished=next_is_sent_finished,
|
| 965 |
+
model_kwargs=next_model_kwargs,
|
| 966 |
+
)
|
| 967 |
+
|
| 968 |
+
# The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU
|
| 969 |
+
state = beam_search_body_fn(state)
|
| 970 |
+
|
| 971 |
+
if not trace:
|
| 972 |
+
state = self._run_loop_in_debug(
|
| 973 |
+
beam_search_cond_fn, beam_search_body_fn, state
|
| 974 |
+
)
|
| 975 |
+
else:
|
| 976 |
+
state = lax.while_loop(beam_search_cond_fn, beam_search_body_fn, state)
|
| 977 |
+
|
| 978 |
+
# Account for the edge-case where there are no finished sequences for a
|
| 979 |
+
# particular batch item. If so, return running sequences for that batch item.
|
| 980 |
+
none_finished = jnp.any(state.is_sent_finished, axis=1)
|
| 981 |
+
sequences = jnp.where(
|
| 982 |
+
none_finished[:, None, None], state.sequences, state.running_sequences
|
| 983 |
+
)
|
| 984 |
+
scores = jnp.where(none_finished[:, None], state.scores, state.running_scores)
|
| 985 |
+
|
| 986 |
+
# take best beam for each batch
|
| 987 |
+
sequences = sequences[:, -1]
|
| 988 |
+
scores = scores[:, -1]
|
| 989 |
+
|
| 990 |
+
return FlaxBeamSearchOutput(sequences=sequences, scores=scores)
|
model/flax_clip_vision_mbart/modeling_clip_vision_mbart.py
ADDED
|
@@ -0,0 +1,778 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Callable, Optional, Tuple
|
| 2 |
+
|
| 3 |
+
import flax.linen as nn
|
| 4 |
+
import jax
|
| 5 |
+
import jax.numpy as jnp
|
| 6 |
+
from flax.core.frozen_dict import FrozenDict, unfreeze
|
| 7 |
+
from jax import lax
|
| 8 |
+
from jax.random import PRNGKey
|
| 9 |
+
from transformers import (
|
| 10 |
+
CLIPVisionConfig,
|
| 11 |
+
FlaxCLIPVisionModel,
|
| 12 |
+
FlaxMBartModel,
|
| 13 |
+
MBartConfig,
|
| 14 |
+
)
|
| 15 |
+
from transformers.modeling_flax_outputs import (
|
| 16 |
+
FlaxBaseModelOutputWithPooling,
|
| 17 |
+
FlaxCausalLMOutputWithCrossAttentions,
|
| 18 |
+
FlaxSeq2SeqLMOutput,
|
| 19 |
+
FlaxSeq2SeqModelOutput,
|
| 20 |
+
)
|
| 21 |
+
from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule
|
| 22 |
+
from transformers.models.mbart.modeling_flax_mbart import (
|
| 23 |
+
FlaxMBartDecoder,
|
| 24 |
+
FlaxPreTrainedModel,
|
| 25 |
+
shift_tokens_right,
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
from .configuration_clip_vision_mbart import CLIPVisionMBartConfig
|
| 29 |
+
from .modeling_clip_vision_utils import FlaxCLIPVisionMBartPreTrainedModel
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class FlaxCLIPVisionMBartModule(nn.Module):
|
| 33 |
+
config: CLIPVisionMBartConfig
|
| 34 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
| 35 |
+
|
| 36 |
+
def setup(self):
|
| 37 |
+
self.shared = nn.Embed(
|
| 38 |
+
self.config.mbart_config.vocab_size,
|
| 39 |
+
self.config.mbart_config.d_model,
|
| 40 |
+
embedding_init=jax.nn.initializers.normal(
|
| 41 |
+
self.config.mbart_config.init_std, self.dtype
|
| 42 |
+
),
|
| 43 |
+
dtype=self.dtype,
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
self.encoder = FlaxCLIPVisionModule(
|
| 47 |
+
self.config.clip_vision_config, dtype=self.dtype
|
| 48 |
+
)
|
| 49 |
+
self.decoder = FlaxMBartDecoder(
|
| 50 |
+
self.config.mbart_config, dtype=self.dtype, embed_tokens=self.shared
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
self.visual_projection = nn.Dense(
|
| 54 |
+
self.config.mbart_config.hidden_size,
|
| 55 |
+
dtype=self.dtype,
|
| 56 |
+
kernel_init=jax.nn.initializers.normal(
|
| 57 |
+
self.config.mbart_config.init_std, self.dtype
|
| 58 |
+
),
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
def _get_encoder_module(self):
|
| 62 |
+
return self.encoder
|
| 63 |
+
|
| 64 |
+
def _get_decoder_module(self):
|
| 65 |
+
return self.decoder
|
| 66 |
+
|
| 67 |
+
def __call__(
|
| 68 |
+
self,
|
| 69 |
+
pixel_values,
|
| 70 |
+
decoder_input_ids,
|
| 71 |
+
decoder_attention_mask,
|
| 72 |
+
decoder_position_ids,
|
| 73 |
+
output_attentions: bool = False,
|
| 74 |
+
output_hidden_states: bool = False,
|
| 75 |
+
return_dict: bool = True,
|
| 76 |
+
deterministic: bool = True,
|
| 77 |
+
):
|
| 78 |
+
|
| 79 |
+
encoder_outputs = self.encoder(
|
| 80 |
+
pixel_values=pixel_values,
|
| 81 |
+
output_attentions=output_attentions,
|
| 82 |
+
output_hidden_states=output_hidden_states,
|
| 83 |
+
return_dict=return_dict,
|
| 84 |
+
deterministic=deterministic,
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
batch_size, sequence_length = encoder_outputs[0].shape[:2]
|
| 88 |
+
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
| 89 |
+
|
| 90 |
+
encoder_hidden_states = self.visual_projection(encoder_outputs[0])
|
| 91 |
+
|
| 92 |
+
decoder_outputs = self.decoder(
|
| 93 |
+
input_ids=decoder_input_ids,
|
| 94 |
+
attention_mask=decoder_attention_mask,
|
| 95 |
+
position_ids=decoder_position_ids,
|
| 96 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 97 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 98 |
+
output_attentions=output_attentions,
|
| 99 |
+
output_hidden_states=output_hidden_states,
|
| 100 |
+
return_dict=return_dict,
|
| 101 |
+
deterministic=deterministic,
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
if not return_dict:
|
| 105 |
+
return decoder_outputs + encoder_outputs
|
| 106 |
+
|
| 107 |
+
return FlaxSeq2SeqModelOutput(
|
| 108 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
| 109 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
| 110 |
+
decoder_attentions=decoder_outputs.attentions,
|
| 111 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
| 112 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
| 113 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
| 114 |
+
encoder_attentions=encoder_outputs.attentions,
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
class FlaxCLIPVisionMBartForConditionalGenerationModule(nn.Module):
|
| 119 |
+
config: CLIPVisionMBartConfig
|
| 120 |
+
dtype: jnp.dtype = jnp.float32
|
| 121 |
+
bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros
|
| 122 |
+
|
| 123 |
+
def setup(self):
|
| 124 |
+
self.model = FlaxCLIPVisionMBartModule(config=self.config, dtype=self.dtype)
|
| 125 |
+
self.lm_head = nn.Dense(
|
| 126 |
+
self.model.shared.num_embeddings,
|
| 127 |
+
use_bias=False,
|
| 128 |
+
dtype=self.dtype,
|
| 129 |
+
kernel_init=jax.nn.initializers.normal(
|
| 130 |
+
self.config.mbart_config.init_std, self.dtype
|
| 131 |
+
),
|
| 132 |
+
)
|
| 133 |
+
self.final_logits_bias = self.param(
|
| 134 |
+
"final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings)
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
def _get_encoder_module(self):
|
| 138 |
+
return self.model.encoder
|
| 139 |
+
|
| 140 |
+
def _get_decoder_module(self):
|
| 141 |
+
return self.model.decoder
|
| 142 |
+
|
| 143 |
+
def _get_visual_projection_module(self):
|
| 144 |
+
return self.model.visual_projection
|
| 145 |
+
|
| 146 |
+
def __call__(
|
| 147 |
+
self,
|
| 148 |
+
pixel_values,
|
| 149 |
+
decoder_input_ids,
|
| 150 |
+
decoder_attention_mask,
|
| 151 |
+
decoder_position_ids,
|
| 152 |
+
output_attentions: bool = False,
|
| 153 |
+
output_hidden_states: bool = False,
|
| 154 |
+
return_dict: bool = True,
|
| 155 |
+
deterministic: bool = True,
|
| 156 |
+
):
|
| 157 |
+
outputs = self.model(
|
| 158 |
+
pixel_values=pixel_values,
|
| 159 |
+
decoder_input_ids=decoder_input_ids,
|
| 160 |
+
decoder_attention_mask=decoder_attention_mask,
|
| 161 |
+
decoder_position_ids=decoder_position_ids,
|
| 162 |
+
output_attentions=output_attentions,
|
| 163 |
+
output_hidden_states=output_hidden_states,
|
| 164 |
+
return_dict=return_dict,
|
| 165 |
+
deterministic=deterministic,
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
hidden_states = outputs[0]
|
| 169 |
+
|
| 170 |
+
if self.config.tie_word_embeddings:
|
| 171 |
+
shared_embedding = self.model.variables["params"]["shared"]["embedding"]
|
| 172 |
+
lm_logits = self.lm_head.apply(
|
| 173 |
+
{"params": {"kernel": shared_embedding.T}}, hidden_states
|
| 174 |
+
)
|
| 175 |
+
else:
|
| 176 |
+
lm_logits = self.lm_head(hidden_states)
|
| 177 |
+
|
| 178 |
+
lm_logits += self.final_logits_bias
|
| 179 |
+
|
| 180 |
+
if not return_dict:
|
| 181 |
+
output = (lm_logits,) + outputs[1:]
|
| 182 |
+
return output
|
| 183 |
+
|
| 184 |
+
return FlaxSeq2SeqLMOutput(
|
| 185 |
+
logits=lm_logits,
|
| 186 |
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
| 187 |
+
decoder_attentions=outputs.decoder_attentions,
|
| 188 |
+
cross_attentions=outputs.cross_attentions,
|
| 189 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
| 190 |
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
| 191 |
+
encoder_attentions=outputs.encoder_attentions,
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
class FlaxCLIPVisionMBartOuterPreTrainedModel(FlaxCLIPVisionMBartPreTrainedModel):
|
| 196 |
+
config_class = CLIPVisionMBartConfig
|
| 197 |
+
base_model_prefix: str = "model"
|
| 198 |
+
module_class: nn.Module = None
|
| 199 |
+
|
| 200 |
+
def __init__(
|
| 201 |
+
self,
|
| 202 |
+
config: CLIPVisionMBartConfig,
|
| 203 |
+
input_shape: Tuple = None,
|
| 204 |
+
seed: int = 0,
|
| 205 |
+
dtype: jnp.dtype = jnp.float32,
|
| 206 |
+
**kwargs,
|
| 207 |
+
):
|
| 208 |
+
if input_shape is None:
|
| 209 |
+
input_shape = (
|
| 210 |
+
(
|
| 211 |
+
1,
|
| 212 |
+
config.clip_vision_config.image_size,
|
| 213 |
+
config.clip_vision_config.image_size,
|
| 214 |
+
3,
|
| 215 |
+
),
|
| 216 |
+
(1, 1),
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
module = self.module_class(config=config, dtype=dtype, **kwargs)
|
| 220 |
+
super().__init__(
|
| 221 |
+
config, module, input_shape=input_shape, seed=seed, dtype=dtype
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict:
|
| 225 |
+
# init input tensors
|
| 226 |
+
pixel_values = jax.random.normal(rng, input_shape[0])
|
| 227 |
+
# # make sure initialization pass will work for FlaxMBartForSequenceClassificationModule
|
| 228 |
+
# input_ids = jax.ops.index_update(input_ids, (..., -1), self.config.eos_token_id)
|
| 229 |
+
|
| 230 |
+
decoder_input_ids = jnp.zeros(input_shape[1], dtype="i4")
|
| 231 |
+
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
|
| 232 |
+
|
| 233 |
+
batch_size, sequence_length = decoder_input_ids.shape
|
| 234 |
+
decoder_position_ids = jnp.broadcast_to(
|
| 235 |
+
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
params_rng, dropout_rng = jax.random.split(rng)
|
| 239 |
+
rngs = {"params": params_rng, "dropout": dropout_rng}
|
| 240 |
+
|
| 241 |
+
return self.module.init(
|
| 242 |
+
rngs,
|
| 243 |
+
pixel_values,
|
| 244 |
+
decoder_input_ids,
|
| 245 |
+
decoder_attention_mask,
|
| 246 |
+
decoder_position_ids,
|
| 247 |
+
)["params"]
|
| 248 |
+
|
| 249 |
+
def init_cache(self, batch_size, max_length, encoder_outputs):
|
| 250 |
+
|
| 251 |
+
decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
|
| 252 |
+
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
|
| 253 |
+
decoder_position_ids = jnp.broadcast_to(
|
| 254 |
+
jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]),
|
| 255 |
+
decoder_input_ids.shape,
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
def _decoder_forward(
|
| 259 |
+
module,
|
| 260 |
+
decoder_input_ids,
|
| 261 |
+
decoder_attention_mask,
|
| 262 |
+
decoder_position_ids,
|
| 263 |
+
**kwargs,
|
| 264 |
+
):
|
| 265 |
+
decoder_module = module._get_decoder_module()
|
| 266 |
+
return decoder_module(
|
| 267 |
+
decoder_input_ids,
|
| 268 |
+
decoder_attention_mask,
|
| 269 |
+
decoder_position_ids,
|
| 270 |
+
**kwargs,
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
init_variables = self.module.init(
|
| 274 |
+
jax.random.PRNGKey(0),
|
| 275 |
+
decoder_input_ids=decoder_input_ids,
|
| 276 |
+
decoder_attention_mask=decoder_attention_mask,
|
| 277 |
+
decoder_position_ids=decoder_position_ids,
|
| 278 |
+
encoder_hidden_states=encoder_outputs[0],
|
| 279 |
+
init_cache=True,
|
| 280 |
+
method=_decoder_forward, # we only need to call the decoder to init the cache
|
| 281 |
+
)
|
| 282 |
+
return unfreeze(init_variables["cache"])
|
| 283 |
+
|
| 284 |
+
def encode(
|
| 285 |
+
self,
|
| 286 |
+
pixel_values: jnp.ndarray,
|
| 287 |
+
output_attentions: Optional[bool] = None,
|
| 288 |
+
output_hidden_states: Optional[bool] = None,
|
| 289 |
+
return_dict: Optional[bool] = None,
|
| 290 |
+
train: bool = False,
|
| 291 |
+
params: dict = None,
|
| 292 |
+
dropout_rng: PRNGKey = None,
|
| 293 |
+
):
|
| 294 |
+
output_attentions = (
|
| 295 |
+
output_attentions
|
| 296 |
+
if output_attentions is not None
|
| 297 |
+
else self.config.output_attentions
|
| 298 |
+
)
|
| 299 |
+
output_hidden_states = (
|
| 300 |
+
output_hidden_states
|
| 301 |
+
if output_hidden_states is not None
|
| 302 |
+
else self.config.output_hidden_states
|
| 303 |
+
)
|
| 304 |
+
return_dict = (
|
| 305 |
+
return_dict if return_dict is not None else self.config.return_dict
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
# pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))
|
| 309 |
+
|
| 310 |
+
# Handle any PRNG if needed
|
| 311 |
+
rngs = {}
|
| 312 |
+
if dropout_rng is not None:
|
| 313 |
+
rngs["dropout"] = dropout_rng
|
| 314 |
+
|
| 315 |
+
def _encoder_forward(module, pixel_values, **kwargs):
|
| 316 |
+
encode_module = module._get_encoder_module()
|
| 317 |
+
visual_projection = module._get_visual_projection_module()
|
| 318 |
+
|
| 319 |
+
outputs = encode_module(pixel_values, **kwargs)
|
| 320 |
+
|
| 321 |
+
return FlaxBaseModelOutputWithPooling(
|
| 322 |
+
last_hidden_state=visual_projection(outputs.last_hidden_state),
|
| 323 |
+
pooler_output=outputs.pooler_output,
|
| 324 |
+
hidden_states=outputs.hidden_states,
|
| 325 |
+
attentions=outputs.attentions,
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
return self.module.apply(
|
| 329 |
+
{"params": params or self.params},
|
| 330 |
+
pixel_values=jnp.array(pixel_values, dtype="i4"),
|
| 331 |
+
output_attentions=output_attentions,
|
| 332 |
+
output_hidden_states=output_hidden_states,
|
| 333 |
+
return_dict=return_dict,
|
| 334 |
+
deterministic=not train,
|
| 335 |
+
rngs=rngs,
|
| 336 |
+
method=_encoder_forward,
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
def decode(
|
| 340 |
+
self,
|
| 341 |
+
decoder_input_ids,
|
| 342 |
+
encoder_outputs,
|
| 343 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
| 344 |
+
decoder_attention_mask: Optional[jnp.ndarray] = None,
|
| 345 |
+
decoder_position_ids: Optional[jnp.ndarray] = None,
|
| 346 |
+
past_key_values: dict = None,
|
| 347 |
+
output_attentions: Optional[bool] = None,
|
| 348 |
+
output_hidden_states: Optional[bool] = None,
|
| 349 |
+
return_dict: Optional[bool] = None,
|
| 350 |
+
train: bool = False,
|
| 351 |
+
params: dict = None,
|
| 352 |
+
dropout_rng: PRNGKey = None,
|
| 353 |
+
):
|
| 354 |
+
|
| 355 |
+
output_attentions = (
|
| 356 |
+
output_attentions
|
| 357 |
+
if output_attentions is not None
|
| 358 |
+
else self.config.output_attentions
|
| 359 |
+
)
|
| 360 |
+
output_hidden_states = (
|
| 361 |
+
output_hidden_states
|
| 362 |
+
if output_hidden_states is not None
|
| 363 |
+
else self.config.output_hidden_states
|
| 364 |
+
)
|
| 365 |
+
return_dict = (
|
| 366 |
+
return_dict if return_dict is not None else self.config.return_dict
|
| 367 |
+
)
|
| 368 |
+
|
| 369 |
+
encoder_hidden_states = encoder_outputs[0]
|
| 370 |
+
|
| 371 |
+
if encoder_attention_mask is None:
|
| 372 |
+
batch_size, sequence_length = encoder_hidden_states.shape[:2]
|
| 373 |
+
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
| 374 |
+
|
| 375 |
+
batch_size, sequence_length = decoder_input_ids.shape
|
| 376 |
+
if decoder_attention_mask is None:
|
| 377 |
+
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
| 378 |
+
|
| 379 |
+
if decoder_position_ids is None:
|
| 380 |
+
if past_key_values is not None:
|
| 381 |
+
raise ValueError(
|
| 382 |
+
"Make sure to provide `decoder_position_ids` when passing `past_key_values`."
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
decoder_position_ids = jnp.broadcast_to(
|
| 386 |
+
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
| 387 |
+
)
|
| 388 |
+
|
| 389 |
+
# Handle any PRNG if needed
|
| 390 |
+
rngs = {}
|
| 391 |
+
if dropout_rng is not None:
|
| 392 |
+
rngs["dropout"] = dropout_rng
|
| 393 |
+
|
| 394 |
+
inputs = {"params": params or self.params}
|
| 395 |
+
|
| 396 |
+
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
|
| 397 |
+
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
|
| 398 |
+
# it can be changed by FlaxMBartAttention module
|
| 399 |
+
if past_key_values:
|
| 400 |
+
inputs["cache"] = past_key_values
|
| 401 |
+
mutable = ["cache"]
|
| 402 |
+
else:
|
| 403 |
+
mutable = False
|
| 404 |
+
|
| 405 |
+
def _decoder_forward(
|
| 406 |
+
module,
|
| 407 |
+
decoder_input_ids,
|
| 408 |
+
decoder_attention_mask,
|
| 409 |
+
decoder_position_ids,
|
| 410 |
+
**kwargs,
|
| 411 |
+
):
|
| 412 |
+
decoder_module = module._get_decoder_module()
|
| 413 |
+
return decoder_module(
|
| 414 |
+
decoder_input_ids,
|
| 415 |
+
decoder_attention_mask,
|
| 416 |
+
decoder_position_ids,
|
| 417 |
+
**kwargs,
|
| 418 |
+
)
|
| 419 |
+
|
| 420 |
+
outputs = self.module.apply(
|
| 421 |
+
inputs,
|
| 422 |
+
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
|
| 423 |
+
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
|
| 424 |
+
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
|
| 425 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 426 |
+
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
|
| 427 |
+
output_attentions=output_attentions,
|
| 428 |
+
output_hidden_states=output_hidden_states,
|
| 429 |
+
return_dict=return_dict,
|
| 430 |
+
deterministic=not train,
|
| 431 |
+
rngs=rngs,
|
| 432 |
+
mutable=mutable,
|
| 433 |
+
method=_decoder_forward,
|
| 434 |
+
)
|
| 435 |
+
|
| 436 |
+
# add updated cache to model output
|
| 437 |
+
if past_key_values is not None and return_dict:
|
| 438 |
+
outputs, past = outputs
|
| 439 |
+
outputs["past_key_values"] = unfreeze(past["cache"])
|
| 440 |
+
return outputs
|
| 441 |
+
elif past_key_values is not None and not return_dict:
|
| 442 |
+
outputs, past = outputs
|
| 443 |
+
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
|
| 444 |
+
|
| 445 |
+
return outputs
|
| 446 |
+
|
| 447 |
+
def __call__(
|
| 448 |
+
self,
|
| 449 |
+
pixel_values: jnp.ndarray,
|
| 450 |
+
decoder_input_ids: Optional[jnp.ndarray] = None,
|
| 451 |
+
decoder_attention_mask: Optional[jnp.ndarray] = None,
|
| 452 |
+
decoder_position_ids: Optional[jnp.ndarray] = None,
|
| 453 |
+
output_attentions: Optional[bool] = None,
|
| 454 |
+
output_hidden_states: Optional[bool] = None,
|
| 455 |
+
return_dict: Optional[bool] = None,
|
| 456 |
+
train: bool = False,
|
| 457 |
+
params: dict = None,
|
| 458 |
+
dropout_rng: PRNGKey = None,
|
| 459 |
+
):
|
| 460 |
+
output_attentions = (
|
| 461 |
+
output_attentions
|
| 462 |
+
if output_attentions is not None
|
| 463 |
+
else self.config.output_attentions
|
| 464 |
+
)
|
| 465 |
+
output_hidden_states = (
|
| 466 |
+
output_hidden_states
|
| 467 |
+
if output_hidden_states is not None
|
| 468 |
+
else self.config.output_hidden_states
|
| 469 |
+
)
|
| 470 |
+
return_dict = (
|
| 471 |
+
return_dict if return_dict is not None else self.config.return_dict
|
| 472 |
+
)
|
| 473 |
+
|
| 474 |
+
# pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))
|
| 475 |
+
|
| 476 |
+
# # prepare encoder inputs
|
| 477 |
+
# if attention_mask is None:
|
| 478 |
+
# attention_mask = jnp.ones_like(input_ids)
|
| 479 |
+
# if position_ids is None:
|
| 480 |
+
# batch_size, sequence_length = input_ids.shape
|
| 481 |
+
# position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
|
| 482 |
+
|
| 483 |
+
# prepare decoder inputs
|
| 484 |
+
# if decoder_input_ids is None:
|
| 485 |
+
# decoder_input_ids = shift_tokens_right(
|
| 486 |
+
# input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id
|
| 487 |
+
# ) # TODO: Check how to use this
|
| 488 |
+
if decoder_attention_mask is None:
|
| 489 |
+
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
|
| 490 |
+
if decoder_position_ids is None:
|
| 491 |
+
batch_size, sequence_length = decoder_input_ids.shape
|
| 492 |
+
decoder_position_ids = jnp.broadcast_to(
|
| 493 |
+
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
| 494 |
+
)
|
| 495 |
+
|
| 496 |
+
# Handle any PRNG if needed
|
| 497 |
+
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
|
| 498 |
+
|
| 499 |
+
return self.module.apply(
|
| 500 |
+
{"params": params or self.params},
|
| 501 |
+
pixel_values=jnp.array(pixel_values, dtype=jnp.float32),
|
| 502 |
+
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
|
| 503 |
+
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
|
| 504 |
+
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
|
| 505 |
+
output_attentions=output_attentions,
|
| 506 |
+
output_hidden_states=output_hidden_states,
|
| 507 |
+
return_dict=return_dict,
|
| 508 |
+
deterministic=not train,
|
| 509 |
+
rngs=rngs,
|
| 510 |
+
)
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
class FlaxCLIPVisionMBartForConditionalGeneration(
|
| 514 |
+
FlaxCLIPVisionMBartOuterPreTrainedModel
|
| 515 |
+
):
|
| 516 |
+
module_class = FlaxCLIPVisionMBartForConditionalGenerationModule
|
| 517 |
+
dtype: jnp.dtype = jnp.float32
|
| 518 |
+
|
| 519 |
+
def decode(
|
| 520 |
+
self,
|
| 521 |
+
decoder_input_ids,
|
| 522 |
+
encoder_outputs,
|
| 523 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
| 524 |
+
decoder_attention_mask: Optional[jnp.ndarray] = None,
|
| 525 |
+
decoder_position_ids: Optional[jnp.ndarray] = None,
|
| 526 |
+
past_key_values: dict = None,
|
| 527 |
+
output_attentions: Optional[bool] = None,
|
| 528 |
+
output_hidden_states: Optional[bool] = None,
|
| 529 |
+
return_dict: Optional[bool] = None,
|
| 530 |
+
deterministic: bool = True,
|
| 531 |
+
params: dict = None,
|
| 532 |
+
dropout_rng: PRNGKey = None,
|
| 533 |
+
):
|
| 534 |
+
output_attentions = (
|
| 535 |
+
output_attentions
|
| 536 |
+
if output_attentions is not None
|
| 537 |
+
else self.config.output_attentions
|
| 538 |
+
)
|
| 539 |
+
output_hidden_states = (
|
| 540 |
+
output_hidden_states
|
| 541 |
+
if output_hidden_states is not None
|
| 542 |
+
else self.config.output_hidden_states
|
| 543 |
+
)
|
| 544 |
+
return_dict = (
|
| 545 |
+
return_dict if return_dict is not None else self.config.return_dict
|
| 546 |
+
)
|
| 547 |
+
|
| 548 |
+
encoder_hidden_states = encoder_outputs[0]
|
| 549 |
+
|
| 550 |
+
if encoder_attention_mask is None:
|
| 551 |
+
batch_size, sequence_length = encoder_hidden_states.shape[:2]
|
| 552 |
+
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
| 553 |
+
|
| 554 |
+
batch_size, sequence_length = decoder_input_ids.shape
|
| 555 |
+
if decoder_attention_mask is None:
|
| 556 |
+
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
| 557 |
+
|
| 558 |
+
if decoder_position_ids is None:
|
| 559 |
+
if past_key_values is not None:
|
| 560 |
+
raise ValueError(
|
| 561 |
+
"Make sure to provide `decoder_position_ids` when passing `past_key_values`."
|
| 562 |
+
)
|
| 563 |
+
|
| 564 |
+
decoder_position_ids = jnp.broadcast_to(
|
| 565 |
+
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
| 566 |
+
)
|
| 567 |
+
|
| 568 |
+
# Handle any PRNG if needed
|
| 569 |
+
rngs = {}
|
| 570 |
+
if dropout_rng is not None:
|
| 571 |
+
rngs["dropout"] = dropout_rng
|
| 572 |
+
|
| 573 |
+
inputs = {"params": params or self.params}
|
| 574 |
+
|
| 575 |
+
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
|
| 576 |
+
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
|
| 577 |
+
# it can be changed by FlaxMBartAttention module
|
| 578 |
+
if past_key_values:
|
| 579 |
+
inputs["cache"] = past_key_values
|
| 580 |
+
mutable = ["cache"]
|
| 581 |
+
else:
|
| 582 |
+
mutable = False
|
| 583 |
+
|
| 584 |
+
def _decoder_forward(
|
| 585 |
+
module,
|
| 586 |
+
decoder_input_ids,
|
| 587 |
+
decoder_attention_mask,
|
| 588 |
+
decoder_position_ids,
|
| 589 |
+
**kwargs,
|
| 590 |
+
):
|
| 591 |
+
decoder_module = module._get_decoder_module()
|
| 592 |
+
outputs = decoder_module(
|
| 593 |
+
decoder_input_ids,
|
| 594 |
+
decoder_attention_mask,
|
| 595 |
+
decoder_position_ids,
|
| 596 |
+
**kwargs,
|
| 597 |
+
)
|
| 598 |
+
hidden_states = outputs[0]
|
| 599 |
+
|
| 600 |
+
if self.config.tie_word_embeddings:
|
| 601 |
+
shared_embedding = module.model.variables["params"]["shared"][
|
| 602 |
+
"embedding"
|
| 603 |
+
]
|
| 604 |
+
lm_logits = module.lm_head.apply(
|
| 605 |
+
{"params": {"kernel": shared_embedding.T}}, hidden_states
|
| 606 |
+
)
|
| 607 |
+
else:
|
| 608 |
+
lm_logits = module.lm_head(hidden_states)
|
| 609 |
+
|
| 610 |
+
lm_logits += module.final_logits_bias
|
| 611 |
+
return lm_logits, outputs
|
| 612 |
+
|
| 613 |
+
outputs = self.module.apply(
|
| 614 |
+
inputs,
|
| 615 |
+
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
|
| 616 |
+
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
|
| 617 |
+
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
|
| 618 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 619 |
+
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
|
| 620 |
+
output_attentions=output_attentions,
|
| 621 |
+
output_hidden_states=output_hidden_states,
|
| 622 |
+
return_dict=return_dict,
|
| 623 |
+
deterministic=deterministic,
|
| 624 |
+
rngs=rngs,
|
| 625 |
+
mutable=mutable,
|
| 626 |
+
method=_decoder_forward,
|
| 627 |
+
)
|
| 628 |
+
|
| 629 |
+
if past_key_values is None:
|
| 630 |
+
lm_logits, decoder_outputs = outputs
|
| 631 |
+
else:
|
| 632 |
+
(lm_logits, decoder_outputs), past = outputs
|
| 633 |
+
|
| 634 |
+
if return_dict:
|
| 635 |
+
outputs = FlaxCausalLMOutputWithCrossAttentions(
|
| 636 |
+
logits=lm_logits,
|
| 637 |
+
hidden_states=decoder_outputs.hidden_states,
|
| 638 |
+
attentions=decoder_outputs.attentions,
|
| 639 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
| 640 |
+
)
|
| 641 |
+
else:
|
| 642 |
+
outputs = (lm_logits,) + decoder_outputs[1:]
|
| 643 |
+
|
| 644 |
+
# add updated cache to model output
|
| 645 |
+
if past_key_values is not None and return_dict:
|
| 646 |
+
outputs["past_key_values"] = unfreeze(past["cache"])
|
| 647 |
+
return outputs
|
| 648 |
+
elif past_key_values is not None and not return_dict:
|
| 649 |
+
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
|
| 650 |
+
|
| 651 |
+
return outputs
|
| 652 |
+
|
| 653 |
+
def prepare_inputs_for_generation(
|
| 654 |
+
self,
|
| 655 |
+
decoder_input_ids,
|
| 656 |
+
max_length,
|
| 657 |
+
attention_mask: Optional[jnp.DeviceArray] = None,
|
| 658 |
+
decoder_attention_mask: Optional[jnp.DeviceArray] = None,
|
| 659 |
+
encoder_outputs=None,
|
| 660 |
+
**kwargs,
|
| 661 |
+
):
|
| 662 |
+
# initializing the cache
|
| 663 |
+
batch_size, seq_length = decoder_input_ids.shape
|
| 664 |
+
|
| 665 |
+
past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
|
| 666 |
+
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
|
| 667 |
+
# But since the decoder uses a causal mask, those positions are masked anyways.
|
| 668 |
+
# Thus we can create a single static attention_mask here, which is more efficient for compilation
|
| 669 |
+
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
|
| 670 |
+
if decoder_attention_mask is not None:
|
| 671 |
+
position_ids = decoder_attention_mask.cumsum(axis=-1) - 1
|
| 672 |
+
extended_attention_mask = lax.dynamic_update_slice(
|
| 673 |
+
extended_attention_mask, decoder_attention_mask, (0, 0)
|
| 674 |
+
)
|
| 675 |
+
else:
|
| 676 |
+
position_ids = jnp.broadcast_to(
|
| 677 |
+
jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)
|
| 678 |
+
)
|
| 679 |
+
|
| 680 |
+
return {
|
| 681 |
+
"past_key_values": past_key_values,
|
| 682 |
+
"encoder_outputs": encoder_outputs,
|
| 683 |
+
"encoder_attention_mask": attention_mask,
|
| 684 |
+
"decoder_attention_mask": extended_attention_mask,
|
| 685 |
+
"decoder_position_ids": position_ids,
|
| 686 |
+
}
|
| 687 |
+
|
| 688 |
+
def update_inputs_for_generation(self, model_outputs, model_kwargs):
|
| 689 |
+
model_kwargs["past_key_values"] = model_outputs.past_key_values
|
| 690 |
+
model_kwargs["decoder_position_ids"] = (
|
| 691 |
+
model_kwargs["decoder_position_ids"][:, -1:] + 1
|
| 692 |
+
)
|
| 693 |
+
return model_kwargs
|
| 694 |
+
|
| 695 |
+
@classmethod
|
| 696 |
+
def from_pretrained(cls, *args, **kwargs):
|
| 697 |
+
# At the moment fast initialization is not supported
|
| 698 |
+
# for composite models
|
| 699 |
+
# kwargs["_fast_init"] = False
|
| 700 |
+
return super().from_pretrained(*args, **kwargs)
|
| 701 |
+
|
| 702 |
+
@classmethod
|
| 703 |
+
def from_clip_vision_mbart_pretrained(
|
| 704 |
+
cls,
|
| 705 |
+
clip_vision_model_name_or_path: str = None,
|
| 706 |
+
mbart_model_name_or_path: str = None,
|
| 707 |
+
*model_args,
|
| 708 |
+
**kwargs,
|
| 709 |
+
) -> FlaxCLIPVisionMBartPreTrainedModel:
|
| 710 |
+
|
| 711 |
+
kwargs_mbart = {
|
| 712 |
+
argument[len("mbart_") :]: value
|
| 713 |
+
for argument, value in kwargs.items()
|
| 714 |
+
if argument.startswith("mbart_")
|
| 715 |
+
}
|
| 716 |
+
|
| 717 |
+
kwargs_clip_vision = {
|
| 718 |
+
argument[len("clip_vision_") :]: value
|
| 719 |
+
for argument, value in kwargs.items()
|
| 720 |
+
if argument.startswith("clip_vision_")
|
| 721 |
+
}
|
| 722 |
+
|
| 723 |
+
# remove mbart, clip_vision kwargs from kwargs
|
| 724 |
+
for key in kwargs_mbart.keys():
|
| 725 |
+
del kwargs["mbart_" + key]
|
| 726 |
+
for key in kwargs_clip_vision.keys():
|
| 727 |
+
del kwargs["clip_vision_" + key]
|
| 728 |
+
|
| 729 |
+
# Load and initialize the mbart and clip_vision model
|
| 730 |
+
mbart_model = kwargs_mbart.pop("model", None)
|
| 731 |
+
if mbart_model is None:
|
| 732 |
+
assert (
|
| 733 |
+
mbart_model_name_or_path is not None
|
| 734 |
+
), "If `model` is not defined as an argument, a `mbart_model_name_or_path` has to be defined"
|
| 735 |
+
|
| 736 |
+
if "config" not in kwargs_mbart:
|
| 737 |
+
mbart_config = MBartConfig.from_pretrained(mbart_model_name_or_path)
|
| 738 |
+
kwargs_mbart["config"] = mbart_config
|
| 739 |
+
|
| 740 |
+
mbart_model = FlaxMBartModel.from_pretrained(
|
| 741 |
+
mbart_model_name_or_path, *model_args, **kwargs_mbart
|
| 742 |
+
)
|
| 743 |
+
|
| 744 |
+
clip_vision_model = kwargs_clip_vision.pop("model", None)
|
| 745 |
+
if clip_vision_model is None:
|
| 746 |
+
assert (
|
| 747 |
+
clip_vision_model_name_or_path is not None
|
| 748 |
+
), "If `model` is not defined as an argument, a `clip_vision_model_name_or_path` has to be defined"
|
| 749 |
+
|
| 750 |
+
if "config" not in kwargs_clip_vision:
|
| 751 |
+
clip_vision_config = CLIPVisionConfig.from_pretrained(
|
| 752 |
+
clip_vision_model_name_or_path
|
| 753 |
+
)
|
| 754 |
+
kwargs_clip_vision["config"] = clip_vision_config
|
| 755 |
+
|
| 756 |
+
clip_vision_model = FlaxCLIPVisionModel.from_pretrained(
|
| 757 |
+
clip_vision_model_name_or_path, *model_args, **kwargs_clip_vision
|
| 758 |
+
)
|
| 759 |
+
|
| 760 |
+
# instantiate config with corresponding kwargs
|
| 761 |
+
dtype = kwargs.pop("dtype", jnp.float32)
|
| 762 |
+
config = CLIPVisionMBartConfig.from_clip_vision_mbart_configs(
|
| 763 |
+
clip_vision_model.config, mbart_model.config, **kwargs
|
| 764 |
+
)
|
| 765 |
+
|
| 766 |
+
# init model
|
| 767 |
+
model = cls(config, *model_args, dtype=dtype, **kwargs)
|
| 768 |
+
model.params["model"]["encoder"] = clip_vision_model.params
|
| 769 |
+
model.params["model"]["decoder"] = mbart_model.params["decoder"]
|
| 770 |
+
model.params["model"]["shared"] = mbart_model.params["shared"]
|
| 771 |
+
# model.params["mbart_model"] = mbart_model.params
|
| 772 |
+
|
| 773 |
+
return model
|
| 774 |
+
|
| 775 |
+
|
| 776 |
+
# flax_clip_vision_mbart_cg = FlaxCLIPVisionMBartForConditionalGeneration.from_clip_vision_mbart_pretrained('openai/clip-vit-base-patch32', 'facebook/mbart-large')
|
| 777 |
+
# outputs = flax_clip_vision_mbart_cg(pixel_values, input_ids, attention_mask, position_ids, output_hidden_states=True)
|
| 778 |
+
# flax_vit_bart_cg.generate(input_ids=pixel_values, decoder_start_token_id=tokenizer.lang_code_to_id['en_XX'])s
|
model/flax_clip_vision_mbart/modeling_clip_vision_utils.py
ADDED
|
@@ -0,0 +1,451 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# NEW
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
# from functools import partial
|
| 6 |
+
from pickle import UnpicklingError
|
| 7 |
+
from typing import Dict, Set, Tuple, Union
|
| 8 |
+
|
| 9 |
+
import flax.linen as nn
|
| 10 |
+
import jax
|
| 11 |
+
import jax.numpy as jnp
|
| 12 |
+
from flax.core.frozen_dict import FrozenDict, unfreeze
|
| 13 |
+
from flax.serialization import from_bytes, to_bytes
|
| 14 |
+
from flax.traverse_util import flatten_dict, unflatten_dict
|
| 15 |
+
from jax.random import PRNGKey
|
| 16 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 17 |
+
from transformers.file_utils import (
|
| 18 |
+
FLAX_WEIGHTS_NAME,
|
| 19 |
+
WEIGHTS_NAME,
|
| 20 |
+
PushToHubMixin,
|
| 21 |
+
cached_path,
|
| 22 |
+
hf_bucket_url,
|
| 23 |
+
is_offline_mode,
|
| 24 |
+
is_remote_url,
|
| 25 |
+
)
|
| 26 |
+
from transformers.modeling_flax_pytorch_utils import (
|
| 27 |
+
load_pytorch_checkpoint_in_flax_state_dict,
|
| 28 |
+
)
|
| 29 |
+
from transformers.utils import logging
|
| 30 |
+
|
| 31 |
+
from .generation_clip_vision_utils import FlaxCLIPVisionMBartGenerationMixin
|
| 32 |
+
|
| 33 |
+
logger = logging.get_logger(__name__)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class FlaxCLIPVisionMBartPreTrainedModel(
|
| 37 |
+
PushToHubMixin, FlaxCLIPVisionMBartGenerationMixin
|
| 38 |
+
):
|
| 39 |
+
r"""
|
| 40 |
+
Base class for all models.
|
| 41 |
+
:class:`~transformers.FlaxPreTrainedModel` takes care of storing the configuration of the models and handles
|
| 42 |
+
methods for loading, downloading and saving models.
|
| 43 |
+
Class attributes (overridden by derived classes):
|
| 44 |
+
- **config_class** (:class:`~transformers.PretrainedConfig`) -- A subclass of
|
| 45 |
+
:class:`~transformers.PretrainedConfig` to use as configuration class for this model architecture.
|
| 46 |
+
- **base_model_prefix** (:obj:`str`) -- A string indicating the attribute associated to the base model in
|
| 47 |
+
derived classes of the same architecture adding modules on top of the base model.
|
| 48 |
+
"""
|
| 49 |
+
config_class = None
|
| 50 |
+
base_model_prefix = ""
|
| 51 |
+
|
| 52 |
+
def __init__(
|
| 53 |
+
self,
|
| 54 |
+
config: PretrainedConfig,
|
| 55 |
+
module: nn.Module,
|
| 56 |
+
input_shape: Tuple = (1, 1),
|
| 57 |
+
seed: int = 0,
|
| 58 |
+
dtype: jnp.dtype = jnp.float32,
|
| 59 |
+
):
|
| 60 |
+
if config is None:
|
| 61 |
+
raise ValueError("config cannot be None")
|
| 62 |
+
|
| 63 |
+
if module is None:
|
| 64 |
+
raise ValueError("module cannot be None")
|
| 65 |
+
|
| 66 |
+
# Those are private to be exposed as typed property on derived classes.
|
| 67 |
+
self._config = config
|
| 68 |
+
self._module = module
|
| 69 |
+
|
| 70 |
+
# Those are public as their type is generic to every derived classes.
|
| 71 |
+
self.key = PRNGKey(seed)
|
| 72 |
+
self.dtype = dtype
|
| 73 |
+
|
| 74 |
+
# randomly initialized parameters
|
| 75 |
+
random_params = self.init_weights(self.key, input_shape)
|
| 76 |
+
|
| 77 |
+
# save required_params as set
|
| 78 |
+
self._required_params = set(flatten_dict(unfreeze(random_params)).keys())
|
| 79 |
+
self.params = random_params
|
| 80 |
+
|
| 81 |
+
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> Dict:
|
| 82 |
+
raise NotImplementedError(f"init method has to be implemented for {self}")
|
| 83 |
+
|
| 84 |
+
@classmethod
|
| 85 |
+
def _from_config(cls, config, **kwargs):
|
| 86 |
+
"""
|
| 87 |
+
All context managers that the model should be initialized under go here.
|
| 88 |
+
"""
|
| 89 |
+
return cls(config, **kwargs)
|
| 90 |
+
|
| 91 |
+
@property
|
| 92 |
+
def config(self) -> PretrainedConfig:
|
| 93 |
+
return self._config
|
| 94 |
+
|
| 95 |
+
@property
|
| 96 |
+
def module(self) -> nn.Module:
|
| 97 |
+
return self._module
|
| 98 |
+
|
| 99 |
+
@property
|
| 100 |
+
def params(self) -> Union[Dict, FrozenDict]:
|
| 101 |
+
return self._params
|
| 102 |
+
|
| 103 |
+
@property
|
| 104 |
+
def required_params(self) -> Set:
|
| 105 |
+
return self._required_params
|
| 106 |
+
|
| 107 |
+
@params.setter
|
| 108 |
+
def params(self, params: Union[Dict, FrozenDict]):
|
| 109 |
+
if isinstance(params, FrozenDict):
|
| 110 |
+
params = unfreeze(params)
|
| 111 |
+
param_keys = set(flatten_dict(params).keys())
|
| 112 |
+
if len(self.required_params - param_keys) > 0:
|
| 113 |
+
raise ValueError(
|
| 114 |
+
"Some parameters are missing. Make sure that `params` include the following "
|
| 115 |
+
f"parameters {self.required_params - param_keys}"
|
| 116 |
+
)
|
| 117 |
+
self._params = params
|
| 118 |
+
|
| 119 |
+
@classmethod
|
| 120 |
+
def from_pretrained(
|
| 121 |
+
cls,
|
| 122 |
+
pretrained_model_name_or_path: Union[str, os.PathLike],
|
| 123 |
+
dtype: jnp.dtype = jnp.float32,
|
| 124 |
+
*model_args,
|
| 125 |
+
**kwargs,
|
| 126 |
+
):
|
| 127 |
+
|
| 128 |
+
r"""
|
| 129 |
+
Instantiate a pretrained flax model from a pre-trained model configuration.
|
| 130 |
+
The warning `Weights from XXX not initialized from pretrained model` means that the weights of XXX do not come
|
| 131 |
+
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
|
| 132 |
+
task.
|
| 133 |
+
The warning `Weights from XXX not used in YYY` means that the layer XXX is not used by YYY, therefore those
|
| 134 |
+
weights are discarded.
|
| 135 |
+
Parameters:
|
| 136 |
+
pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`):
|
| 137 |
+
Can be either:
|
| 138 |
+
- A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co.
|
| 139 |
+
Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under
|
| 140 |
+
a user or organization name, like ``dbmdz/bert-base-german-cased``.
|
| 141 |
+
- A path to a `directory` containing model weights saved using
|
| 142 |
+
:func:`~transformers.FlaxPreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``.
|
| 143 |
+
- A path or url to a `pt index checkpoint file` (e.g, ``./tf_model/model.ckpt.index``). In this
|
| 144 |
+
case, ``from_pt`` should be set to :obj:`True`.
|
| 145 |
+
model_args (sequence of positional arguments, `optional`):
|
| 146 |
+
All remaning positional arguments will be passed to the underlying model's ``__init__`` method.
|
| 147 |
+
config (:obj:`Union[PretrainedConfig, str, os.PathLike]`, `optional`):
|
| 148 |
+
Can be either:
|
| 149 |
+
- an instance of a class derived from :class:`~transformers.PretrainedConfig`,
|
| 150 |
+
- a string or path valid as input to :func:`~transformers.PretrainedConfig.from_pretrained`.
|
| 151 |
+
Configuration for the model to use instead of an automatically loaded configuation. Configuration can
|
| 152 |
+
be automatically loaded when:
|
| 153 |
+
- The model is a model provided by the library (loaded with the `model id` string of a pretrained
|
| 154 |
+
model).
|
| 155 |
+
- The model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded
|
| 156 |
+
by supplying the save directory.
|
| 157 |
+
- The model is loaded by supplying a local directory as ``pretrained_model_name_or_path`` and a
|
| 158 |
+
configuration JSON file named `config.json` is found in the directory.
|
| 159 |
+
cache_dir (:obj:`Union[str, os.PathLike]`, `optional`):
|
| 160 |
+
Path to a directory in which a downloaded pretrained model configuration should be cached if the
|
| 161 |
+
standard cache should not be used.
|
| 162 |
+
from_pt (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
| 163 |
+
Load the model weights from a PyTorch checkpoint save file (see docstring of
|
| 164 |
+
``pretrained_model_name_or_path`` argument).
|
| 165 |
+
force_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
| 166 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
| 167 |
+
cached versions if they exist.
|
| 168 |
+
resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
| 169 |
+
Whether or not to delete incompletely received files. Will attempt to resume the download if such a
|
| 170 |
+
file exists.
|
| 171 |
+
proxies (:obj:`Dict[str, str], `optional`):
|
| 172 |
+
A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128',
|
| 173 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
| 174 |
+
local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`):
|
| 175 |
+
Whether or not to only look at local files (i.e., do not try to download the model).
|
| 176 |
+
revision(:obj:`str`, `optional`, defaults to :obj:`"main"`):
|
| 177 |
+
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
| 178 |
+
git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any
|
| 179 |
+
identifier allowed by git.
|
| 180 |
+
kwargs (remaining dictionary of keyword arguments, `optional`):
|
| 181 |
+
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
|
| 182 |
+
:obj:`output_attentions=True`). Behaves differently depending on whether a ``config`` is provided or
|
| 183 |
+
automatically loaded:
|
| 184 |
+
- If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the
|
| 185 |
+
underlying model's ``__init__`` method (we assume all relevant updates to the configuration have
|
| 186 |
+
already been done)
|
| 187 |
+
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class
|
| 188 |
+
initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of
|
| 189 |
+
``kwargs`` that corresponds to a configuration attribute will be used to override said attribute
|
| 190 |
+
with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration
|
| 191 |
+
attribute will be passed to the underlying model's ``__init__`` function.
|
| 192 |
+
Examples::
|
| 193 |
+
>>> from transformers import BertConfig, FlaxBertModel
|
| 194 |
+
>>> # Download model and configuration from huggingface.co and cache.
|
| 195 |
+
>>> model = FlaxBertModel.from_pretrained('bert-base-cased')
|
| 196 |
+
>>> # Model was saved using `save_pretrained('./test/saved_model/')` (for example purposes, not runnable).
|
| 197 |
+
>>> model = FlaxBertModel.from_pretrained('./test/saved_model/')
|
| 198 |
+
>>> # Loading from a PyTorch checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
|
| 199 |
+
>>> config = BertConfig.from_json_file('./pt_model/config.json')
|
| 200 |
+
>>> model = FlaxBertModel.from_pretrained('./pt_model/pytorch_model.bin', from_pt=True, config=config)
|
| 201 |
+
"""
|
| 202 |
+
config = kwargs.pop("config", None)
|
| 203 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
| 204 |
+
from_pt = kwargs.pop("from_pt", False)
|
| 205 |
+
force_download = kwargs.pop("force_download", False)
|
| 206 |
+
resume_download = kwargs.pop("resume_download", False)
|
| 207 |
+
proxies = kwargs.pop("proxies", None)
|
| 208 |
+
local_files_only = kwargs.pop("local_files_only", False)
|
| 209 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
| 210 |
+
revision = kwargs.pop("revision", None)
|
| 211 |
+
from_pipeline = kwargs.pop("_from_pipeline", None)
|
| 212 |
+
from_auto_class = kwargs.pop("_from_auto", False)
|
| 213 |
+
|
| 214 |
+
user_agent = {
|
| 215 |
+
"file_type": "model",
|
| 216 |
+
"framework": "flax",
|
| 217 |
+
"from_auto_class": from_auto_class,
|
| 218 |
+
}
|
| 219 |
+
if from_pipeline is not None:
|
| 220 |
+
user_agent["using_pipeline"] = from_pipeline
|
| 221 |
+
|
| 222 |
+
if is_offline_mode() and not local_files_only:
|
| 223 |
+
logger.info("Offline mode: forcing local_files_only=True")
|
| 224 |
+
local_files_only = True
|
| 225 |
+
|
| 226 |
+
# Load config if we don't provide a configuration
|
| 227 |
+
if not isinstance(config, PretrainedConfig):
|
| 228 |
+
config_path = (
|
| 229 |
+
config if config is not None else pretrained_model_name_or_path
|
| 230 |
+
)
|
| 231 |
+
config, model_kwargs = cls.config_class.from_pretrained(
|
| 232 |
+
config_path,
|
| 233 |
+
*model_args,
|
| 234 |
+
cache_dir=cache_dir,
|
| 235 |
+
return_unused_kwargs=True,
|
| 236 |
+
force_download=force_download,
|
| 237 |
+
resume_download=resume_download,
|
| 238 |
+
proxies=proxies,
|
| 239 |
+
local_files_only=local_files_only,
|
| 240 |
+
use_auth_token=use_auth_token,
|
| 241 |
+
revision=revision,
|
| 242 |
+
_from_auto=from_auto_class,
|
| 243 |
+
_from_pipeline=from_pipeline,
|
| 244 |
+
**kwargs,
|
| 245 |
+
)
|
| 246 |
+
else:
|
| 247 |
+
model_kwargs = kwargs
|
| 248 |
+
|
| 249 |
+
# Add the dtype to model_kwargs
|
| 250 |
+
model_kwargs["dtype"] = dtype
|
| 251 |
+
|
| 252 |
+
# Load model
|
| 253 |
+
if pretrained_model_name_or_path is not None:
|
| 254 |
+
if os.path.isdir(pretrained_model_name_or_path):
|
| 255 |
+
if from_pt and os.path.isfile(
|
| 256 |
+
os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
|
| 257 |
+
):
|
| 258 |
+
# Load from a PyTorch checkpoint
|
| 259 |
+
archive_file = os.path.join(
|
| 260 |
+
pretrained_model_name_or_path, WEIGHTS_NAME
|
| 261 |
+
)
|
| 262 |
+
elif os.path.isfile(
|
| 263 |
+
os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME)
|
| 264 |
+
):
|
| 265 |
+
# Load from a Flax checkpoint
|
| 266 |
+
archive_file = os.path.join(
|
| 267 |
+
pretrained_model_name_or_path, FLAX_WEIGHTS_NAME
|
| 268 |
+
)
|
| 269 |
+
else:
|
| 270 |
+
raise EnvironmentError(
|
| 271 |
+
f"Error no file named {[FLAX_WEIGHTS_NAME, WEIGHTS_NAME]} found in directory "
|
| 272 |
+
f"{pretrained_model_name_or_path} or `from_pt` set to False"
|
| 273 |
+
)
|
| 274 |
+
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(
|
| 275 |
+
pretrained_model_name_or_path
|
| 276 |
+
):
|
| 277 |
+
archive_file = pretrained_model_name_or_path
|
| 278 |
+
else:
|
| 279 |
+
archive_file = hf_bucket_url(
|
| 280 |
+
pretrained_model_name_or_path,
|
| 281 |
+
filename=WEIGHTS_NAME if from_pt else FLAX_WEIGHTS_NAME,
|
| 282 |
+
revision=revision,
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
# redirect to the cache, if necessary
|
| 286 |
+
try:
|
| 287 |
+
resolved_archive_file = cached_path(
|
| 288 |
+
archive_file,
|
| 289 |
+
cache_dir=cache_dir,
|
| 290 |
+
force_download=force_download,
|
| 291 |
+
proxies=proxies,
|
| 292 |
+
resume_download=resume_download,
|
| 293 |
+
local_files_only=local_files_only,
|
| 294 |
+
use_auth_token=use_auth_token,
|
| 295 |
+
user_agent=user_agent,
|
| 296 |
+
)
|
| 297 |
+
except EnvironmentError as err:
|
| 298 |
+
logger.error(err)
|
| 299 |
+
msg = (
|
| 300 |
+
f"Can't load weights for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
|
| 301 |
+
f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n"
|
| 302 |
+
f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a file named {WEIGHTS_NAME}.\n\n"
|
| 303 |
+
)
|
| 304 |
+
raise EnvironmentError(msg)
|
| 305 |
+
|
| 306 |
+
if resolved_archive_file == archive_file:
|
| 307 |
+
logger.info(f"loading weights file {archive_file}")
|
| 308 |
+
else:
|
| 309 |
+
logger.info(
|
| 310 |
+
f"loading weights file {archive_file} from cache at {resolved_archive_file}"
|
| 311 |
+
)
|
| 312 |
+
else:
|
| 313 |
+
resolved_archive_file = None
|
| 314 |
+
|
| 315 |
+
# init random models
|
| 316 |
+
model = cls(config, *model_args, **model_kwargs)
|
| 317 |
+
|
| 318 |
+
if from_pt:
|
| 319 |
+
state = load_pytorch_checkpoint_in_flax_state_dict(
|
| 320 |
+
model, resolved_archive_file
|
| 321 |
+
)
|
| 322 |
+
else:
|
| 323 |
+
with open(resolved_archive_file, "rb") as state_f:
|
| 324 |
+
try:
|
| 325 |
+
state = from_bytes(cls, state_f.read())
|
| 326 |
+
except UnpicklingError:
|
| 327 |
+
raise EnvironmentError(
|
| 328 |
+
f"Unable to convert {archive_file} to Flax deserializable object. "
|
| 329 |
+
)
|
| 330 |
+
# make sure all arrays are stored as jnp.arrays
|
| 331 |
+
# NOTE: This is to prevent a bug this will be fixed in Flax >= v0.3.4:
|
| 332 |
+
# https://github.com/google/flax/issues/1261
|
| 333 |
+
state = jax.tree_util.tree_map(jnp.array, state)
|
| 334 |
+
|
| 335 |
+
# if model is base model only use model_prefix key
|
| 336 |
+
if (
|
| 337 |
+
cls.base_model_prefix not in dict(model.params)
|
| 338 |
+
and cls.base_model_prefix in state
|
| 339 |
+
):
|
| 340 |
+
state = state[cls.base_model_prefix]
|
| 341 |
+
|
| 342 |
+
# if model is head model and we are loading weights from base model
|
| 343 |
+
# we initialize new params dict with base_model_prefix
|
| 344 |
+
if (
|
| 345 |
+
cls.base_model_prefix in dict(model.params)
|
| 346 |
+
and cls.base_model_prefix not in state
|
| 347 |
+
):
|
| 348 |
+
state = {cls.base_model_prefix: state}
|
| 349 |
+
|
| 350 |
+
# flatten dicts
|
| 351 |
+
state = flatten_dict(state)
|
| 352 |
+
|
| 353 |
+
random_state = flatten_dict(unfreeze(model.params))
|
| 354 |
+
|
| 355 |
+
missing_keys = model.required_params - set(state.keys())
|
| 356 |
+
unexpected_keys = set(state.keys()) - model.required_params
|
| 357 |
+
|
| 358 |
+
# add missing keys as random parameters
|
| 359 |
+
for missing_key in missing_keys:
|
| 360 |
+
state[missing_key] = random_state[missing_key]
|
| 361 |
+
|
| 362 |
+
# remove unexpected keys to not be saved again
|
| 363 |
+
for unexpected_key in unexpected_keys:
|
| 364 |
+
del state[unexpected_key]
|
| 365 |
+
|
| 366 |
+
if len(unexpected_keys) > 0:
|
| 367 |
+
logger.warning(
|
| 368 |
+
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when "
|
| 369 |
+
f"initializing {model.__class__.__name__}: {unexpected_keys}\n"
|
| 370 |
+
f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task "
|
| 371 |
+
f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n"
|
| 372 |
+
f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect "
|
| 373 |
+
f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
|
| 374 |
+
)
|
| 375 |
+
else:
|
| 376 |
+
logger.info(
|
| 377 |
+
f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n"
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
if len(missing_keys) > 0:
|
| 381 |
+
logger.warning(
|
| 382 |
+
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
|
| 383 |
+
f"and are newly initialized: {missing_keys}\n"
|
| 384 |
+
f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
|
| 385 |
+
)
|
| 386 |
+
else:
|
| 387 |
+
logger.info(
|
| 388 |
+
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n"
|
| 389 |
+
f"If your task is similar to the task the model of the checkpoint was trained on, "
|
| 390 |
+
f"you can already use {model.__class__.__name__} for predictions without further training."
|
| 391 |
+
)
|
| 392 |
+
|
| 393 |
+
# set correct parameters
|
| 394 |
+
model.params = unflatten_dict(state)
|
| 395 |
+
|
| 396 |
+
return model
|
| 397 |
+
|
| 398 |
+
def save_pretrained(
|
| 399 |
+
self,
|
| 400 |
+
save_directory: Union[str, os.PathLike],
|
| 401 |
+
params=None,
|
| 402 |
+
push_to_hub=False,
|
| 403 |
+
**kwargs,
|
| 404 |
+
):
|
| 405 |
+
"""
|
| 406 |
+
Save a model and its configuration file to a directory, so that it can be re-loaded using the
|
| 407 |
+
`:func:`~transformers.FlaxPreTrainedModel.from_pretrained`` class method
|
| 408 |
+
Arguments:
|
| 409 |
+
save_directory (:obj:`str` or :obj:`os.PathLike`):
|
| 410 |
+
Directory to which to save. Will be created if it doesn't exist.
|
| 411 |
+
push_to_hub (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
| 412 |
+
Whether or not to push your model to the Hugging Face model hub after saving it.
|
| 413 |
+
.. warning::
|
| 414 |
+
Using :obj:`push_to_hub=True` will synchronize the repository you are pushing to with
|
| 415 |
+
:obj:`save_directory`, which requires :obj:`save_directory` to be a local clone of the repo you are
|
| 416 |
+
pushing to if it's an existing folder. Pass along :obj:`temp_dir=True` to use a temporary directory
|
| 417 |
+
instead.
|
| 418 |
+
kwargs:
|
| 419 |
+
Additional key word arguments passed along to the
|
| 420 |
+
:meth:`~transformers.file_utils.PushToHubMixin.push_to_hub` method.
|
| 421 |
+
"""
|
| 422 |
+
if os.path.isfile(save_directory):
|
| 423 |
+
logger.error(
|
| 424 |
+
f"Provided path ({save_directory}) should be a directory, not a file"
|
| 425 |
+
)
|
| 426 |
+
return
|
| 427 |
+
|
| 428 |
+
if push_to_hub:
|
| 429 |
+
commit_message = kwargs.pop("commit_message", None)
|
| 430 |
+
repo = self._create_or_get_repo(save_directory, **kwargs)
|
| 431 |
+
|
| 432 |
+
os.makedirs(save_directory, exist_ok=True)
|
| 433 |
+
|
| 434 |
+
# get abs dir
|
| 435 |
+
save_directory = os.path.abspath(save_directory)
|
| 436 |
+
# save config as well
|
| 437 |
+
self.config.architectures = [self.__class__.__name__[4:]]
|
| 438 |
+
self.config.save_pretrained(save_directory)
|
| 439 |
+
|
| 440 |
+
# save model
|
| 441 |
+
output_model_file = os.path.join(save_directory, FLAX_WEIGHTS_NAME)
|
| 442 |
+
with open(output_model_file, "wb") as f:
|
| 443 |
+
params = params if params is not None else self.params
|
| 444 |
+
model_bytes = to_bytes(params)
|
| 445 |
+
f.write(model_bytes)
|
| 446 |
+
|
| 447 |
+
logger.info(f"Model weights saved in {output_model_file}")
|
| 448 |
+
|
| 449 |
+
if push_to_hub:
|
| 450 |
+
url = self._push_to_hub(repo, commit_message=commit_message)
|
| 451 |
+
logger.info(f"Model pushed to the hub in this commit: {url}")
|