Oh_Bugger_2k / app.py
flobbit's picture
Upload app.py
3f7b352
raw
history blame
980 Bytes
__all__ = ['learn', 'classify_image', 'categories', 'image', 'label', 'examples', 'intf']
# Cell
from fastai.vision.all import *
import gradio as gr
# Cell
#learn = load_learner('ohbugger2k.pkl')
learn = load_learner('flobbit/ohbugger2k')
# Cell
categories = learn.dls.vocab
def classify_image(img):
pred,idx,probs = learn.predict(img)
return dict(zip(categories, map(float,probs)))
# Cell
image = gr.inputs.Image(shape=(192, 192))
label = gr.outputs.Label(num_top_classes=5)
examples = ['carolina.jpg','abb.jpg','lady.jpg','mantis.jpg','monarch.jpg','western striped cucumber.jpg','carolina2.jpg', 'large milkweed bug.jpg', 'twice-stabbed.jpg', 'viceroy.jpg', 'lubber.jpg', 'GrashopperAulocaraElliotti958.webp']
# Cell
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples,
title="Oh! Bugger! 2k", description="Trained on 130133 images over 2000 species using ResNet18. Provide an image or select from one below.")
intf.launch()