Spaces:
Sleeping
Sleeping
remove function
Browse files
app.py
CHANGED
@@ -1,10 +1,6 @@
|
|
1 |
-
# app.py
|
2 |
-
|
3 |
import os
|
4 |
import streamlit as st
|
5 |
import arxiv
|
6 |
-
import networkx as nx
|
7 |
-
import matplotlib.pyplot as plt
|
8 |
import datetime
|
9 |
|
10 |
# -------------------------------
|
@@ -20,42 +16,36 @@ client = Groq(
|
|
20 |
# Helper Functions (Groq-based)
|
21 |
# -------------------------------
|
22 |
def groq_summarize(text: str) -> str:
|
23 |
-
"""
|
24 |
-
Summarize the given text using Groq's chat completion API.
|
25 |
-
Adjust the prompt or model as needed.
|
26 |
-
"""
|
27 |
response = client.chat.completions.create(
|
28 |
messages=[
|
29 |
-
{
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
],
|
34 |
model="llama-3.3-70b-versatile",
|
35 |
)
|
36 |
return response.choices[0].message.content.strip()
|
37 |
|
38 |
-
def
|
39 |
-
"""
|
40 |
-
Generate text (e.g., research proposals) using Groq's chat completion API.
|
41 |
-
Adjust the prompt or model as needed.
|
42 |
-
"""
|
43 |
response = client.chat.completions.create(
|
44 |
messages=[
|
45 |
-
{
|
46 |
-
"role": "user",
|
47 |
-
"content": text
|
48 |
-
}
|
49 |
],
|
50 |
model="llama-3.3-70b-versatile",
|
51 |
)
|
52 |
return response.choices[0].message.content.strip()
|
53 |
|
54 |
# -------------------------------
|
55 |
-
#
|
56 |
# -------------------------------
|
57 |
def retrieve_papers(query, max_results=5):
|
58 |
-
"""Retrieve academic papers from arXiv."""
|
59 |
search = arxiv.Search(query=query, max_results=max_results)
|
60 |
papers = []
|
61 |
for result in search.results():
|
@@ -69,74 +59,16 @@ def retrieve_papers(query, max_results=5):
|
|
69 |
papers.append(paper)
|
70 |
return papers
|
71 |
|
72 |
-
def summarize_text(text):
|
73 |
-
"""
|
74 |
-
Wrap the groq_summarize function so it's easy to switch
|
75 |
-
implementations if needed.
|
76 |
-
"""
|
77 |
-
return groq_summarize(text)
|
78 |
-
|
79 |
-
def generate_concept_map(papers):
|
80 |
-
"""Create a concept map (graph) based on author connections."""
|
81 |
-
G = nx.Graph()
|
82 |
-
for paper in papers:
|
83 |
-
G.add_node(paper['title'])
|
84 |
-
for i in range(len(papers)):
|
85 |
-
for j in range(i + 1, len(papers)):
|
86 |
-
if set(papers[i]['authors']) & set(papers[j]['authors']):
|
87 |
-
G.add_edge(papers[i]['title'], papers[j]['title'])
|
88 |
-
return G
|
89 |
-
|
90 |
-
def generate_citation(paper):
|
91 |
-
"""Generate APA-style citation for a paper."""
|
92 |
-
authors = ", ".join(paper['authors'])
|
93 |
-
if isinstance(paper['published'], datetime.datetime):
|
94 |
-
year = paper['published'].year
|
95 |
-
else:
|
96 |
-
year = "n.d."
|
97 |
-
return f"{authors} ({year}). {paper['title']}. Retrieved from {paper['url']}"
|
98 |
-
|
99 |
-
def generate_proposal_suggestions(text):
|
100 |
-
"""
|
101 |
-
Generate novel research proposal suggestions based on text,
|
102 |
-
wrapping the groq_generate function.
|
103 |
-
"""
|
104 |
-
prompt = (
|
105 |
-
f"Based on this research summary:\n\n{text}\n\n"
|
106 |
-
"Propose novel research directions:"
|
107 |
-
)
|
108 |
-
return groq_generate(prompt)
|
109 |
-
|
110 |
-
def get_cached_summary(paper_id, text):
|
111 |
-
"""
|
112 |
-
Retrieve or create a cached summary for a given paper.
|
113 |
-
This ensures each paper's summary is generated only once.
|
114 |
-
"""
|
115 |
-
if 'summaries' not in st.session_state:
|
116 |
-
st.session_state.summaries = {}
|
117 |
-
if paper_id not in st.session_state.summaries:
|
118 |
-
st.session_state.summaries[paper_id] = summarize_text(text)
|
119 |
-
return st.session_state.summaries[paper_id]
|
120 |
-
|
121 |
# -------------------------------
|
122 |
# Streamlit Interface
|
123 |
# -------------------------------
|
124 |
st.title("📚 PaperPilot – Intelligent Academic Navigator")
|
125 |
|
126 |
-
# Add the Overview subheading
|
127 |
st.write("""
|
128 |
-
PaperPilot
|
129 |
-
|
130 |
-
comprehensive toolkit to explore them in depth. You can read a quick summary of each article,
|
131 |
-
view a visual concept map to see how different papers are interlinked, generate properly
|
132 |
-
formatted citations, and even receive suggestions for novel research proposals. By integrating
|
133 |
-
state-of-the-art AI models, PaperPilot streamlines the entire literature review process—making
|
134 |
-
it easier to stay organized, discover new insights, and advance your academic endeavors.
|
135 |
""")
|
136 |
|
137 |
-
# ---------------------------------
|
138 |
-
# Sidebar: Search & Navigation
|
139 |
-
# ---------------------------------
|
140 |
with st.sidebar:
|
141 |
st.header("🔍 Search Parameters")
|
142 |
query = st.text_input("Research topic or question:")
|
@@ -148,120 +80,37 @@ with st.sidebar:
|
|
148 |
if papers:
|
149 |
st.session_state.papers = papers
|
150 |
st.success(f"Found {len(papers)} papers!")
|
151 |
-
|
152 |
-
st.session_state.active_section = "articles"
|
153 |
else:
|
154 |
st.error("No papers found. Try different keywords.")
|
155 |
else:
|
156 |
st.warning("Please enter a search query")
|
157 |
|
158 |
-
# Navigation buttons (only relevant if we have papers in session)
|
159 |
-
if 'papers' in st.session_state and st.session_state.papers:
|
160 |
-
st.header("🔀 Navigation")
|
161 |
-
if st.button("📑 Show Articles"):
|
162 |
-
st.session_state.active_section = "articles"
|
163 |
-
if st.button("📚 Literature Review & Summary"):
|
164 |
-
st.session_state.active_section = "review"
|
165 |
-
if st.button("🔍 Concept & Visual Graph"):
|
166 |
-
st.session_state.active_section = "graph"
|
167 |
-
if st.button("📝 Formatted Citations"):
|
168 |
-
st.session_state.active_section = "citations"
|
169 |
-
if st.button("💡 Research Proposal"):
|
170 |
-
st.session_state.active_section = "proposal"
|
171 |
-
|
172 |
-
# ---------------------------------
|
173 |
-
# Main Content Area
|
174 |
-
# ---------------------------------
|
175 |
-
if 'active_section' not in st.session_state:
|
176 |
-
st.session_state.active_section = "none"
|
177 |
-
|
178 |
if 'papers' in st.session_state and st.session_state.papers:
|
179 |
papers = st.session_state.papers
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
# ---------------------------------
|
184 |
-
if st.session_state.active_section == "articles":
|
185 |
-
st.header("📑 Retrieved Papers")
|
186 |
for idx, paper in enumerate(papers, 1):
|
187 |
with st.expander(f"{idx}. {paper['title']}"):
|
188 |
st.markdown(f"**Authors:** {', '.join(paper['authors'])}")
|
189 |
-
if isinstance(paper['published'], datetime.datetime)
|
190 |
-
pub_date = paper['published'].strftime('%Y-%m-%d')
|
191 |
-
else:
|
192 |
-
pub_date = "n.d."
|
193 |
st.markdown(f"**Published:** {pub_date}")
|
194 |
-
st.markdown(f"**Link:** [PDF
|
195 |
-
|
196 |
-
st.
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
summary = get_cached_summary(paper_id, paper['summary'])
|
210 |
-
st.write(summary)
|
211 |
-
combined_summary += summary + "\n\n"
|
212 |
-
|
213 |
-
st.session_state.combined_summary = combined_summary
|
214 |
-
|
215 |
-
# ---------------------------------
|
216 |
-
# 3) Concept & Visual Graph
|
217 |
-
# ---------------------------------
|
218 |
-
elif st.session_state.active_section == "graph":
|
219 |
-
st.header("🔍 Concept & Visual Graph")
|
220 |
-
st.write(
|
221 |
-
"Below is a concept map that visualizes how the authors are "
|
222 |
-
"connected across the retrieved articles. Each node represents a paper, "
|
223 |
-
"and edges indicate shared authors."
|
224 |
-
)
|
225 |
-
|
226 |
-
with st.spinner("Generating concept map..."):
|
227 |
-
G = generate_concept_map(papers)
|
228 |
-
if G.nodes():
|
229 |
-
fig, ax = plt.subplots(figsize=(10, 8))
|
230 |
-
pos = nx.spring_layout(G, k=0.5, seed=42)
|
231 |
-
nx.draw_networkx_nodes(G, pos, node_color='skyblue', node_size=2000, ax=ax)
|
232 |
-
nx.draw_networkx_edges(G, pos, edge_color='#666666', ax=ax)
|
233 |
-
nx.draw_networkx_labels(G, pos, font_size=10, ax=ax)
|
234 |
-
ax.axis('off')
|
235 |
-
st.pyplot(fig)
|
236 |
-
else:
|
237 |
-
st.info("No significant connections found between papers.")
|
238 |
-
|
239 |
-
# ---------------------------------
|
240 |
-
# 4) Formatted Citations
|
241 |
-
# ---------------------------------
|
242 |
-
elif st.session_state.active_section == "citations":
|
243 |
-
st.header("📝 Formatted Citations (APA Style)")
|
244 |
-
for paper in papers:
|
245 |
-
st.markdown(f"- {generate_citation(paper)}")
|
246 |
-
|
247 |
-
# ---------------------------------
|
248 |
-
# 5) Research Proposal
|
249 |
-
# ---------------------------------
|
250 |
-
elif st.session_state.active_section == "proposal":
|
251 |
-
st.header("💡 Research Proposal Suggestions")
|
252 |
-
|
253 |
-
# Make sure we have a combined summary for the proposals
|
254 |
-
if 'combined_summary' not in st.session_state:
|
255 |
-
with st.spinner("Synthesizing research overview..."):
|
256 |
-
full_text = "\n".join([p['summary'] for p in papers])
|
257 |
-
st.session_state.combined_summary = summarize_text(full_text)
|
258 |
-
|
259 |
-
with st.spinner("Generating innovative ideas..."):
|
260 |
-
proposal = generate_proposal_suggestions(st.session_state.combined_summary[:2000])
|
261 |
-
st.write(proposal)
|
262 |
-
|
263 |
-
else:
|
264 |
-
st.info("Please select an option from the sidebar to begin.")
|
265 |
else:
|
266 |
st.info("Enter a query in the sidebar and click 'Find Articles' to get started.")
|
267 |
|
|
|
|
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
import arxiv
|
|
|
|
|
4 |
import datetime
|
5 |
|
6 |
# -------------------------------
|
|
|
16 |
# Helper Functions (Groq-based)
|
17 |
# -------------------------------
|
18 |
def groq_summarize(text: str) -> str:
|
|
|
|
|
|
|
|
|
19 |
response = client.chat.completions.create(
|
20 |
messages=[
|
21 |
+
{"role": "user", "content": f"Summarize the following text concisely:\n\n{text}"}
|
22 |
+
],
|
23 |
+
model="llama-3.3-70b-versatile",
|
24 |
+
)
|
25 |
+
return response.choices[0].message.content.strip()
|
26 |
+
|
27 |
+
def groq_eli5(text: str) -> str:
|
28 |
+
response = client.chat.completions.create(
|
29 |
+
messages=[
|
30 |
+
{"role": "user", "content": f"Explain this like I'm 5 years old:\n\n{text}"}
|
31 |
],
|
32 |
model="llama-3.3-70b-versatile",
|
33 |
)
|
34 |
return response.choices[0].message.content.strip()
|
35 |
|
36 |
+
def groq_key_takeaways(text: str) -> str:
|
|
|
|
|
|
|
|
|
37 |
response = client.chat.completions.create(
|
38 |
messages=[
|
39 |
+
{"role": "user", "content": f"List the key takeaways from this research:\n\n{text}"}
|
|
|
|
|
|
|
40 |
],
|
41 |
model="llama-3.3-70b-versatile",
|
42 |
)
|
43 |
return response.choices[0].message.content.strip()
|
44 |
|
45 |
# -------------------------------
|
46 |
+
# Paper Retrieval & Processing
|
47 |
# -------------------------------
|
48 |
def retrieve_papers(query, max_results=5):
|
|
|
49 |
search = arxiv.Search(query=query, max_results=max_results)
|
50 |
papers = []
|
51 |
for result in search.results():
|
|
|
59 |
papers.append(paper)
|
60 |
return papers
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
# -------------------------------
|
63 |
# Streamlit Interface
|
64 |
# -------------------------------
|
65 |
st.title("📚 PaperPilot – Intelligent Academic Navigator")
|
66 |
|
|
|
67 |
st.write("""
|
68 |
+
PaperPilot helps you quickly analyze research papers by summarizing them, highlighting key takeaways, and explaining complex topics in simple terms.
|
69 |
+
Enter a query and get structured insights instantly!
|
|
|
|
|
|
|
|
|
|
|
70 |
""")
|
71 |
|
|
|
|
|
|
|
72 |
with st.sidebar:
|
73 |
st.header("🔍 Search Parameters")
|
74 |
query = st.text_input("Research topic or question:")
|
|
|
80 |
if papers:
|
81 |
st.session_state.papers = papers
|
82 |
st.success(f"Found {len(papers)} papers!")
|
83 |
+
st.session_state.active_section = "review"
|
|
|
84 |
else:
|
85 |
st.error("No papers found. Try different keywords.")
|
86 |
else:
|
87 |
st.warning("Please enter a search query")
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
if 'papers' in st.session_state and st.session_state.papers:
|
90 |
papers = st.session_state.papers
|
91 |
+
|
92 |
+
if st.session_state.active_section == "review":
|
93 |
+
st.header("📚 Literature Review & Summary")
|
|
|
|
|
|
|
94 |
for idx, paper in enumerate(papers, 1):
|
95 |
with st.expander(f"{idx}. {paper['title']}"):
|
96 |
st.markdown(f"**Authors:** {', '.join(paper['authors'])}")
|
97 |
+
pub_date = paper['published'].strftime('%Y-%m-%d') if isinstance(paper['published'], datetime.datetime) else "n.d."
|
|
|
|
|
|
|
98 |
st.markdown(f"**Published:** {pub_date}")
|
99 |
+
st.markdown(f"**Link:** [PDF]({paper['url']})")
|
100 |
+
|
101 |
+
with st.spinner("Generating insights..."):
|
102 |
+
short_description = groq_summarize(paper['summary'])
|
103 |
+
key_takeaways = groq_key_takeaways(paper['summary'])
|
104 |
+
eli5_explanation = groq_eli5(paper['summary'])
|
105 |
+
|
106 |
+
st.subheader("Short Description")
|
107 |
+
st.write(short_description)
|
108 |
+
|
109 |
+
st.subheader("Key Takeaways")
|
110 |
+
st.write(key_takeaways)
|
111 |
+
|
112 |
+
st.subheader("Explain Like I'm 5 (ELI5)")
|
113 |
+
st.write(eli5_explanation)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
else:
|
115 |
st.info("Enter a query in the sidebar and click 'Find Articles' to get started.")
|
116 |
|