import streamlit as st import torch import open_clip from PIL import Image from classifier import few_shot_fault_classification # Load lightweight CLIP model device = "cuda" if torch.cuda.is_available() else "cpu" model, _, preprocess = open_clip.create_model_and_transforms('RN50', pretrained='openai') model = model.to(device) model.eval() st.title("🛠️ Few-Shot Fault Detection (Industrial Quality Control)") st.markdown("Upload **10 Nominal Images**, **10 Defective Images**, and one or more **Test Images** to classify.") col1, col2 = st.columns(2) with col1: nominal_files = st.file_uploader("Upload Nominal Images", type=["png", "jpg", "jpeg"], accept_multiple_files=True) with col2: defective_files = st.file_uploader("Upload Defective Images", type=["png", "jpg", "jpeg"], accept_multiple_files=True) test_files = st.file_uploader("Upload Test Images", type=["png", "jpg", "jpeg"], accept_multiple_files=True) if st.button("Classify Test Images"): if len(nominal_files) < 1 or len(defective_files) < 1 or len(test_files) < 1: st.warning("Please upload at least 1 image in each category.") else: st.info("Running classification...") nominal_imgs = [preprocess(Image.open(f).convert("RGB")).unsqueeze(0) for f in nominal_files] defective_imgs = [preprocess(Image.open(f).convert("RGB")).unsqueeze(0) for f in defective_files] test_imgs = [preprocess(Image.open(f).convert("RGB")).unsqueeze(0) for f in test_files] results = few_shot_fault_classification( model=model, test_images=[img.squeeze(0) for img in test_imgs], test_image_filenames=[f.name for f in test_files], nominal_images=[img.squeeze(0) for img in nominal_imgs], nominal_descriptions=[f.name for f in nominal_files], defective_images=[img.squeeze(0) for img in defective_imgs], defective_descriptions=[f.name for f in defective_files], num_few_shot_nominal_imgs=len(nominal_files), device=device ) for res in results: st.write(f"**{res['image_path']}** ➜ {res['classification_result']} " f"(Nominal: {res['non_defect_prob']}, Defective: {res['defect_prob']})")