Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
|
@@ -13,6 +13,30 @@ import spaces
|
|
| 13 |
import torch
|
| 14 |
import yaml
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
random_texts = {}
|
| 17 |
for lang in ['en', 'ja']:
|
| 18 |
with open(f'{lang}.txt', 'r') as r:
|
|
@@ -86,25 +110,6 @@ VOCAB = get_vocab()
|
|
| 86 |
def tokenize(ps):
|
| 87 |
return [i for i in map(VOCAB.get, ps) if i is not None]
|
| 88 |
|
| 89 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 90 |
-
|
| 91 |
-
snapshot = snapshot_download(repo_id='hexgrad/kokoro', allow_patterns=['*.pt', '*.pth', '*.yml'], use_auth_token=os.environ['TOKEN'])
|
| 92 |
-
config = yaml.safe_load(open(os.path.join(snapshot, 'config.yml')))
|
| 93 |
-
model = build_model(config['model_params'])
|
| 94 |
-
for key, value in model.items():
|
| 95 |
-
for module in value.children():
|
| 96 |
-
if isinstance(module, torch.nn.RNNBase):
|
| 97 |
-
module.flatten_parameters()
|
| 98 |
-
_ = [model[key].eval() for key in model]
|
| 99 |
-
_ = [model[key].to(device) for key in model]
|
| 100 |
-
for key, state_dict in torch.load(os.path.join(snapshot, 'net.pth'), map_location='cpu', weights_only=True)['net'].items():
|
| 101 |
-
assert key in model, key
|
| 102 |
-
try:
|
| 103 |
-
model[key].load_state_dict(state_dict)
|
| 104 |
-
except:
|
| 105 |
-
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
| 106 |
-
model[key].load_state_dict(state_dict, strict=False)
|
| 107 |
-
|
| 108 |
CHOICES = {
|
| 109 |
'🇺🇸 🚺 American Female 0': 'af_0',
|
| 110 |
'🇺🇸 🚺 Bella': 'af_bella',
|
|
|
|
| 13 |
import torch
|
| 14 |
import yaml
|
| 15 |
|
| 16 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 17 |
+
|
| 18 |
+
snapshot = snapshot_download(repo_id='hexgrad/kokoro', allow_patterns=['*.pt', '*.pth', '*.yml'], use_auth_token=os.environ['TOKEN'])
|
| 19 |
+
config = yaml.safe_load(open(os.path.join(snapshot, 'config.yml')))
|
| 20 |
+
model = build_model(config['model_params'])
|
| 21 |
+
for key, value in model.items():
|
| 22 |
+
for module in value.children():
|
| 23 |
+
if isinstance(module, torch.nn.RNNBase):
|
| 24 |
+
module.flatten_parameters()
|
| 25 |
+
|
| 26 |
+
_ = [model[key].eval() for key in model]
|
| 27 |
+
_ = [model[key].to(device) for key in model]
|
| 28 |
+
for key, state_dict in torch.load(os.path.join(snapshot, 'net.pth'), map_location='cpu', weights_only=True)['net'].items():
|
| 29 |
+
assert key in model, key
|
| 30 |
+
try:
|
| 31 |
+
model[key].load_state_dict(state_dict)
|
| 32 |
+
except:
|
| 33 |
+
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
| 34 |
+
model[key].load_state_dict(state_dict, strict=False)
|
| 35 |
+
|
| 36 |
+
PARAM_COUNT = sum(p.numel() for value in model.values() for p in value.parameters())
|
| 37 |
+
print('PARAM_COUNT', PARAM_COUNT)
|
| 38 |
+
assert PARAM_COUNT < 82_000_000, PARAM_COUNT
|
| 39 |
+
|
| 40 |
random_texts = {}
|
| 41 |
for lang in ['en', 'ja']:
|
| 42 |
with open(f'{lang}.txt', 'r') as r:
|
|
|
|
| 110 |
def tokenize(ps):
|
| 111 |
return [i for i in map(VOCAB.get, ps) if i is not None]
|
| 112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
CHOICES = {
|
| 114 |
'🇺🇸 🚺 American Female 0': 'af_0',
|
| 115 |
'🇺🇸 🚺 Bella': 'af_bella',
|